PRE BID QUERIES

Ammendment No. II

Construction of Residential Complex (Ph -II) for AIIMS, Raipur (CG) and their Maintenance during DLP on comprehensive, design, engineering, procurement and cnonstruction (EPC) Basis.

HSCC/AIIMS/Raipur/Phase-II/Housing/2020 dated 25.04.2020

Tender No.

Date: 20.05.2020

SI. No.	Clause/Sub Head/Page No.	Clause Description	Comments/Observations/ Query	Remarks provided(if any)	HSCC Reply
			•		.,
1		Apparatus forming part of the Main/Sub Panels shall have the following minimum clearances. i. Between phases - 32 mm ii. Between phases and neutral - 26 mm iii. Between phases and earth - 26 mm iv. Between neutral and earth - 26 mm	Minimum clearances required as per IEC 61439 shall be min. 14 mm. However you may consider clearances as below:- i. Between Phases: 25mm ii. Between phase and earth: 19 mm iii. Between phase and neutral: 19mm	Kindly consider clearances as below:- i. Between Phases: 25mm ii. Between phase and earth: 19 mm iii. Between phase and neutral: 19mm	shall be as per tender conditions.
2		Auxiliary contacts 6 NO + 6 NC, of rating 16Amp at 415 volts 50Hz.	ACB makes approved in tenders offers 4 NO + 4NC auxiliary contacts	Kindly consider 4NO + 4NC	shall be as per tender conditions.
3	CIRCUIT BREAKERS	Shunt release for tripping the breaker remotely and shall be suitable for 240voll415 volt 50Hz with range of operation from 10% to 130% of rated voltage.	Wide range of operation from 10% - 130% will increase the Coil VA Burden and power consumption. Kindly consider range of operation as 70% to 130% which is available with all approved makes.	Kindly consider range of operation as 70% to 130% of rated voltage.	shall be as per tender conditions.
4	2.2/Spec Page E-13 R0/MOULDED CASE CIRCUIT BREAKERS	MCCBs shall conform to IS 13947 (Part 2) & IEC 947 (2) in all respects.	Latest standard for MCCB is IS/IEC 60947-2	Kindly amend as IS/IEC 60947-2	Latest IS/IEC will be accepted
5		Fault identification of O/L, S/C, E/F shall be indicated on panel door.	This is a standard feaure for ACB however same is not available for MCCB's as of now. We can give common LED indication on panel door for tripping due to Over load or / and Short circuit faults	Kindly delete the same.	Stands deleted
6	R0/MOULDED CASE CIRCUIT BREAKERS	The MCCBs shall have the following frame sizes subject to meeting the fault level or as per manufacturer's standard practice. a. Upto 100A rating 100A frame. b. Above 100A upto 250A 250A frame. d. Above 250A up to 400A 400A frame. e. Above 400A up to 630Aq 630A frame. f. Above 630A to 800A 630A frame. f. Above 630A to 800A 630A frame.	Frame sizes are specific to some manufacturer.	Please accept standard frame sizes of approved makes	standard frame sizes of approved makes may be accpted
7		All miniature circuit breakers shall be of minimum 9 KA rated rupturing capacity unless otherwise specified.	All miniature circuit breakers shall be of minimum 10KA rated rupturing capacity unless otherwise specified.	Kindly accept minimum rupturing capacity as 10kA.	Accepted
8	·	The capacitor unit shall be Heavy Duty MPP resin filled, copper wound type. The dielectric should be made of polypropylene. Capacitor Impregnation shall be OilType. Capacitor should be fitted with safety device for each capacitor units. The capacitor should be low loss type (total losses should not exceed 0.45 W/ KVAR).	Capacitor unit shall be Heavy Duty/Extra Heavy Duty as per given parameters for Over current & Peak Inrhs current .	Kindly include Heavy Duty/Extra Heavy duty as per mentioned parameters.	Heavy Duty/Extra Heavy duty accepted
9	Variable Frequency Drive	L&T make is missing in Variable Frequency Drive	We are a reputed and establised make of VFD in industry and have a complete range of VFD from 0.1 kW to 450kW.	Kindly add L&T in make list of VFD.	shall be as per tender conditions.

10	extension of bid submission date		As you are aware that no movement is possible due to complete lockdown in the country in compliance with the appeal of Hon'ble Prime Minister of India to observe the 'Janta Curfew' and various notifications' orders of Govt of India' State Government issued from time to time with regard to 'Lockdown' of the country including Madhya Pradesh due to Corona Virus Disease (COVID-19). Our offices were not functional and also not able to visit the project location due to this situation. Banks working is also operational with minimum staff and getting service from the bank for the BG/FDR etc is also taking time. Now some employees of our company are able to join the office and again started working on the tender. We are expecting some more relaxation on person/ vehicle movement by the government after 17 May 2020. As this tender is on EPC basis, need through working to derive items BOQ incorporating site visit reports and other aspects of the project to submit the most competitive rates. Considering the above facts, it is requested to consider an extension of bid submission date for at least 21 days to facilitate preparing competitive rates, eligibility documents/ EMD/DD etc. A request letter is also attached for your kind consideration, please.	As per tender condition
11	reschedule the date for the Pre- Tender Meeting		It its to inform you that due to the lock down imposed all over the country because of Covid-19, it was not possible to attend the Pre-Tender Meeting held on 14-05-2020 at HSCC Office, Noida. There are a lot of queries regarding this tender to be discussed in the meeting. Hence, it is requested to your good self to please reschedule the date for the Pre-Tender Meeting after lock down period.	As per tender condition
12	Soil Investigation Report		Kindly Provide Soil Investigation Report for designing structure parts of buildings	Soil investigation report is attached for information only. The Topographical survey, Geotechnical investigation, Hydrawulic survey, other invetigation(s) as required/desired shall be in the scope of Contractor. Detailed design and engineering shall be done accordingly.
13	Tender drawings		Also provide Tender drawings in Auto Cad format for easing estimation works.	PDF drawings have already been uploaded with tender
14	Clause 4 & Clause 11.1(b)	Maintenance during Defect Liability Period (DLP)	Sir, kindly define the scope of work ' of Maintenance during Defect Liability Period.	As per tender condition
15	Clause 11.1 (d)	Soil Investigation report will be provided by HSCC to contractor for reference	There is no Soil Investigation report attached in any of the tender documents, kindly provide it as in EPC contract we need it for structural design.	Soil investigation report is attached for information only. The Topographical survey, Geotechnical investigation, Hydrawulic survey, other invetigation(s) as required/desired shall be in the scope of Contractor. Detailed design and engineering shall be done accordingly.
16	Clause 11.2	Approvals Required	a) Sir, as per our information, campus already has existing building with people living in it, campus approval happens once and then for addition new building permission is taken, Thus, we understand that we have to get all related approvals for only the new blocks to be constructed as mentioned in this tender. b) Kindly provide the drawings of existing services in the site campus	As per tender condition
17	Clause 24, Page 18	Testing facilities," Contractor/EPC agency shall bear the cost of two (02)Nos. qualified engineer having experience of 3 years on role of HSCC for quality control of works"	Kindly specify the cost of engineer per month that is to be borne by the contractor.	Payment shall be made as per the minimum wages guidelines of labour department
18	OPC 43 Grade Cement (Conforming to IS8112)		Sir, ACC. Jaypee Cement. J K. Cement, Vikram, Shree are not supplying OPC 43 grade cement in Chhattisgarh. Kindly add JK Lakshmi cement, Emami cement to the list, as they have a manufacturing plant in the vicinity of Raipur (CG) & they have stable and regular supply of OPC 43. Also they are approved in various central government departments.	As per tender condition
19	Reinforcement Steel (TMT Bars)		Sir, RINL supply is not available in Chhattisgarh. Sir, kindly add "Panther brand TMT of Jindal Steel & Power Limited (JSPL), as they are a primary producer and have their manufacturing facility in state of Chhattisgarh. Also they are in the approved list of CPWD, AAI, NBCC etc.	As per tender condition
20	WPC Flush Doors, WPC Door frame and Shutters		Sir, only a single manufacture is approved astor vive, New, New York, New Yo	As per tender condition
21	U-PVC Windows		To the Commensions. Sir, only a single manufacturer is mentioned, which would result in monopolysing of the product and would result in non-competitive rates. Since, equivalent makes is subjected to price adjustments, thus we request you to kindly add "Duroplast", "NCL Veka", "Rehau", these brands are a roved in CPWD letc also	As per tender condition
22	STP,ETP,VVTP System Integrator/FIRE FIGHTING System Integrator /EPBAX , SOLAR System Integrator		Sir, it is requested to kindly keep the specialized jobs free for execution by any agencies of repute. We work with a select few specialized agencies of repute, which ensures quality work on timely delivery at competitive prices. We feel limiting/specifying names would result in monopolistic prices for the work execution, thus we kindly request you to remove the names from this for healthy & competitive rates & better work control for the tender.	As per approve make list

23	Inroduction about Site	Total Area of all the Blocks combined to be constructed is mentioned is 30,440.00 SQM	a) We are considering that the contractors has to build this area only including stilt area, common areas, mumty, balcony, corridors, lift machine room etc. whatso ever. Kindly advise b)Kindly provide the building dimensions for all the blocks to be built in this tender. c)Kindly provide the AutoCad drawing of this project, as it will be helpful for us in working.	(a) The plinth area shall be calculated as per the "Rules for working out plinth area from plans" of CPWD norm(s). The above area is based on the concept drawings which include Free FAR! FAR! Non FAR and other components. Stilted portion has also not been considered at ground floor or at other floor as case may be. (b) Any decrease in the area with respect to the prescribed area shall be recovered proportionately. However additional cost on account of increase in area over and above prescribed area upto +2% shall not be payable and deemed to be included in the quoted rate. Any increase in the area with respect to the prescribed area more than +2% shall be paid proportionately. (c) PDF drawings have already been uploaded with tender,
24	External Finishes-Site Plan	2. ALL INTERNAL ROADS WILL BE CONCRETE WITH BRUSH FINISH 3. CONCRETE KERB ON EDGES OF FOOTPATHS, GREEN ISLANDS, ETC. 4. PAVER TILES + SANDSTONE BANDS ON FOOTPATHS 9. PARKING AREA – CAR PARKING @ CONCRETE WITH BRUSH FINISH	Kindly clarify, a) Length & width of Internal Road & cross section of the internal road. b) Length of Footpath & cross section of the same. c) Cross section of Drains to be made along the internal road. d) The demarcated location of Car Parking in the campus and the area (in SQM) of the required car parking.	As per tender condition
25	External Finishes-Site Plan	11. GATE & GUARD ROOM – SAND STONE CLADDING (VENTILATED FACADE) WITH GRC JALI, GRANITE DLADDIN, ZINC CLADDING, ALUMNIUM DOORS & WINDOWS, MS GATE AS PER DESIGN	Kindly clarify, a) Details, concept drawings & elevation of the Gate b) The size (in SQM) and amenities(like bathroom) to be provided for the Guard room.	As per tender condition
26	Finishes Residential Blocks	All Blocks	Kindly clarify, a) Finishes of Staircases(like tread, riser & Railing) b) Staircase tread/riser size, Only type 3 has steps of 300/150mm rest all are 250/157mm. Can this be standarized across all blocks c) Railing / parapet height has been given as – 1000mm, whereas the same is specified as 1200mm as per NBC 2016 d) External Finish-Crushed Stone Dust Paint, none of the paint companies have such a product, blease clarify	As per tender condition
27	Landscape Concept, Landscape Sustainability, Guidelines PDF Page no 18-21.	It is mentioned to make a grand landscape design with woodlands, plazas, squares, courtyards, market place, amphitheatre, reading zones, sports area and other architectural land marks etc.	Kindly provide a) detailed scope of work for the same with Landscape area (in SQM) and locations demarcated in the site plan. b) provide the areas(in SQM), concept drawings of all the structures (like market place, plazas, square, amphitheatre etc) and schedule of finishes for the same.	As per tender condition
28	DBR - Plumbing, Clause 1.5,	Garden Hydrant System & Irrigation system for lawns and gardens	Kindly provide the area(in SQM) and location for the Landscape/Garden areas as it is not mentioned anywhere in the tender.	The total plot area and the footprint area of the buildings are already mentioned in the tender.
29	Clause 6 DBR - Plumbing, Clause 9	WTP, STP	kindly clarify, a) Kindly clarify, b) Clause 9, B, 2.5- Water demand Projection mentioned is 170 CUM, is this daily/monthly/yearly?	A)As per Drawing/as Per site condition b)Daily water demand Projection
30	DBR - Plumbing, Clause 9,B,2.6.1	Under Ground/Overhead Water Storage	Kindly Clarify, a) Do we have to make individual UG tank for water supply for each block or can it be centralized as per contractors discretion? a) Do we have to make individual UG tank for Fire Fighiting for each block or can it be centralized as per contractors discretion?	A)Centralized UG tank forwater supply B)No Fire fighting UG tank as per DBR
31	DBR - Plumbing, Clause 9, C- Design Basis Report of Reverse Osmosis Plant (RO Plant) & Technical Specification- PHE and Fire Fighting Works	Clause 9,C,2: Portable RO Unit & Technical Specs, Clasue 15:- REVERSE OSMOSIS (R.O.) PLANT FOR PROCESS AND DRINKING WATER	Kindly Clarify, a) In DRI it is mentioned Portable RO Units in each buildings while, in Technical specification it is mentioned centralized RO unit for the whole project. Kindly advise.	A)As per DBR Portable RO unit in Each building

32	Fighting System & Technical Specification- Fire	Clasue 9(F), 1.0, "Fire Fighting system shall comprise of Wet Riser /Hydrant (Internal & External), Down comer System" & Technical Specs. Clasue 21, Scope of Work-21.01(i). "Fire sprinkler system, as described later in the volume."	Kindly Clarify, Do we have to consider Fire sprinkler system also in addition to scope of work of Fire Fighting as mentioned in DBR in all blocks	No Fire Sprinkler system
33	DBR - Plumbing, Clause 3, Sanitary Works	a) WCs - Low volume dual flushing system comprising concealed cistern are proposed as per IS: 2556. b) Lavatory Basins available in all size and shapes including wall hung, over or under counter types etc with infra-red sensor as per IS: 2256 (Part 7) 1995. c) Accessories - Soap dispensers, toilet paper holders, hand drier, etc. shall be of Stainless Steel. d) Chrome Fittings Provision for additional and special hospital fittings where required shall be	Kindly clarify, a) It is understood by us that we have to provide flushing system comprising of concelead cistern system in all the bathrooms of all residences, in all hostels, in full amenity block. Kindly Advise. b) Lavatory basin is to be provided with infra-red sensor CP fittings in all the bathrooms of all residences, in all hostels, in full amenity block. Kindly Advise. c) In accessories - kindly provide the exact list as you have mentioned "etc.", and due to this the accessories list will be highly variable and would be difficult to calculate cost of accessories. d) Kindly specify the list of "special hospital fittings where required shall be made".	a)Low volume dual flushing system comprising concealed cistern shall be proposed in Type-4 &6 and amenity block. b)No infra-red sensor in lavatory Basins. c) Requirements as per drawing of Toilet layout(Soap dispenser, toilet paper holder, towel rail, soap tray, coat hook, hand drier). d) No hospital fittings shall be required.
34	DBR - Fire Fighting DBR- HVAC		With study of both clauses we have understood that we have to provide pressurization system in all the Staircases & all Lift Lobby & all Lift-well of all the building blocks to be constructed in this tender. Kindly advise.	A) No compartment system is required. B) Pressurisation Required as per NBC/Local bylaws for lift lobby/lift well of high rise buildings only not all buildings
35	DBR-Electrical Clause 11.8, UPS System	UPS System	Kindly clarify the capacity of UPS and list of equipments for which UPS will provide backup,as list of System LV equipments is very long	UPS for LV equipment CCTV,PA,FDA etc. considered as per design based on DBR and specs.
36	DBR-Electrical, Clause 5 & Clause 6, Electrical Substation	Electrical Substation	Kindly clarify the location for the new Electrical Substation to be made in the site plan.	Pacakge type substation has been consided. Proposed to nearest existing Substation.
37	PHE & Fire Fighting Works, Clause 18	HYDROPNEUMATIC SYSTEM	Kindly Clarify, a) Sir, this is not mentioned in Designing Basis report, do we have to provide it?	Hyopneumatic system is to be provided
38	PHE & Fire Fighting Works, Pg no 69 to 75	TERRACE WATERPROOFING AND INSULATION, WATERPROOFING OF WATER TANKS & STP, TOILET WATERPROOFING,	Sir multiple specification is given for the same work, kindly clarify which specification to follow.	As per technical Specification
39	Tender Drawings		Are the dimensions mentioned (lift well, corridor, room size etc.) in the drawings fixed or can be hanged a bit keeping inline with NBC 2016 code.	Detailed architectural planning, design and enginering shall be in the scope of contractor as per relevant clause(s) of tender provison(s) and approval of competent
				арргочагої сотретепт

All other terms & conditions of tender shall remain unchanged.

Prospective bidders are advised to regularly scan through HSCC e-tender portal http://www.tenderwizard.com/HSCC as corrigendum/amendments etc, if any, will be notified on this e- tender portal only and separate advertisement separate advertisement will not be made for this.

Thanking You. General Manager(Projects)

CARRIED OUT FOR

H.S.C.C (INDIA) LIMITED

(A Government of India Enterprise)

SUBMITTED BY

Becquerel Industries Pvt. Ltd. (BIPL)

NABL Accredited Laboratory

H/O: 3, New Trimurti Co.Op. Hsg Society, Ingole Nagar, Wardha Road, Nagpur - 440005.MAHARASHTRA, INDIA. H/O: +91 9822 565 879 | Fax. :0712-228666

Lab Add.: A-36, MIDC Industrial Area, Butibori, Nagpur - 441108

Lab Phone: (07104) 265587 | +91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in

INDEX

S.NO.	TITLE	PAGE NO.
1	1.0 OBJECT	3
0	2.0 INTRODUCTION	3
2	2.1 PROJECT DESCRIPTION	3
3	3.0 SCOPE OF WORK	4
	4.0 GEOLOGICAL INFORMATION OF THE REGION	4
	4.1 REGIONAL GEOLOGY	4
4	4.2 SITE GEOLOGY	5
	4.3 SEISMICITY	5
	5.0 METHODOLOGY OF FIELD INVESTIGATION	6
	5.1 BORE HOLE	6
	5.2 STANDARD PENETRATION TESTS (SPT)	7
_	5.3 DISTURBED SAMPLING (SOIL) IN BOREHOLES (D.S)	8
5	5.4 UNDISTURBED SAMPLING (SOIL) IN BOREHOLES (U.D.S)	9
	5.5 ROCK CORE SAMPLES	9
	5.6 GROUND WATER	12
	5.7 CHEMICAL ATTACK	12
6	6.0 GEOTECHNICAL LABORATORY TESTING	12
7	7.0 ENGINEERING ANALYSIS OF FOUNDATION SUPPORT	13
8	8.0 BEARING CAPACITY	15
	9.0 GENERALISED CONSIDERATION FOR CONSTRUCTION OF	00
9	FOUNDATION	20
10	10.0 CONCLUSION / RECOMMENDATIONS	21
11	11.0 REFERENCES	23

	ANNEXURE				
S.NO	TITLE	PAGE NO.			
1	SAMPLE CALCULATIONS	25			
2	PLAN OF WORK /LOCATION	30			
3	PROFILE	32			
4	BORE LOGS	34			
5	TEST RESULTS	48			
6	CHEMICAL TEST RESULTS	74			
7	GRAPHS	76			
8	PHOTOGRAPHS	96			

REPORT

Report No. 2262

Report Date. 14.6.2019

E-6 (A), Sector-1, Noida CUSTOMER : H.S.C.C (INDIA) LIMITED ADDRESS:

(U.P.)-201 301

Becquerel Industries Pvt.

HSCC/D&E/AIIMS/Raipur/Resid CUSTOMER

ential/Geotech_Survey/2019/0 SAMPLED BY: REFERENCE No.

6 DT. 20.06.2019

Geotechnical Investigation for

Proposed Construction of

MATERIAL **PROJECT** Residential Blocks at AIIMS : SPT & Soil from 5Locations **IDENTIFICATION**

Raipur, (CG)

DATE OF FIELD TEST SPT & Lab Test on Soil 28.06.2019 to 15.07.2019

TEST PERFORMED samples.

DATE OFLAB TEST: From 19.07.2019 onwards METHOD OF TEST As Per Indian Standard

SUB SOIL EXPLORATION & ANALYSIS REPORT

1.0 OBJECT

Conducting detailed Subsoil Investigation for proposed "Geotechnical Investigation for Proposed Construction of Residential Blocks at AIIMS, Raipur, (CG)." for "H.S.C.C (INDIA) LIMITED" The present report consists of detailed engineering services carried out at the above mention site location.

2.0 INTRODUCTION

2.1 PROJECT DESCRIPTION

Exploratory drilling and other geotechnical instigations work is carried out for M/s. "H.S.C.C (INDIA) LIMITED", for the Project of "Geotechnical Investigation for Proposed Construction of Residential Blocks at AIIMS, Raipur (CG)."

Investigation was intended to evaluate bearing capacity of available soil/rock stratum and other physical parameters necessary for the design of suitable foundation for proposed construction of new recreation and residential Buildings. The scope of work includes in this project is explain briefly below. The main text of the report includes description of field explorations, laboratory testing, subsurface conditions, conclusions and recommendations based upon review of existing data, engineering studies and analysis. M/s. Becquerel Industries Pvt. Ltd. has been appointed by H.S.C.C (INDIA) LIMITED for carrying out geotechnical investigation at the project site.

3.0 SCOPE OF WORK

The overall scope of work was to investigate the stratigarphy at the site and to develop preliminary geotechnical recommendations for the initial planning to accomplished these purposes, the work is being conducted in the following phases.

- 1) Drilling 13 boreholes to specified depth in order to evaluate the stratigarphy at the site, and to collect soil samples for laboratory testing's.
- 2) Testing selected soil and groundwater samples in the laboratory to determine pertinent index and engineering properties; and
- 3) Analyzing all the field and laboratory data to develop geotechnical recommendations for foundation design and construction.

	Exploratory Boreholes		CO-OR	DINATES		DEPTH	
SR. No	STRUCTURE/LOCATION/ CHAINAGE	B.H No	EASTING X	NORTHING Y	REDUCED LEVEL (M)	OF G.W.T (M)	TERMINATION DEPTH (M)
1	Type -1B Left Side	BH-1	81.5642	21.2317		2.00	10.50
2	Type -1B Front	BH-2	81.5940	21.2621		2.50	10.25
3	Type -1B Front	BH-3	81.5939	21.2624		4.00	13.50
4	Type -1 A Front	BH-4	81.5946	21.2322		2.10	10.00
5	Type -1 A Front	BH-5	81.5949	21.2625		6.00	10.50
6	Type-3 A Left Side	BH-6	81.5956	21.2334		6.50	10.00
7	Type -3A Left Side	BH-7	81.5987	21.2638		6.00	10.15
8	Type-4 A Left Side	BH-8	81.5948	21.2643		6.20	10.00
9	Type -4A Left Side	BH-9	81.5945	21.2646		7.00	10.50
10	Type -4A Left Side	BH-10	81.5943	21.2345		7.50	10.00
11	Director Bungalow Front side	BH-11				7.50	10.00
12	Director Bungalow Left side	BH-12	81.5964	21.2656		6.50	10.30
13	Director Bungalow Left side	BH-13	81.5965	21.2665		6.00	10.20

4.0 GEOLOGICAL INFORMATION OF THE REGION

4.1 REGIONAL GEOLOGY

Project "Geotechnical Investigation for Proposed Construction of Residential Blocks at AlIMS, Raipur (CG)." is in the state of Chhattisgarh. The total area is cover in Raipur district.

Raipur district is located in the centre of the Chhattisgarh state and is bounded by East longitudes 81°32'05" & 82°59'05" and by North latitudes 19°46'35" & 21°53'00". Raipur is located near the centre of a large plain, sometimes referred as the "rice bowl of India", where hundreds of varieties of rice are grown. The Mahanadi Riverflows to the east of the city of Raipur, and the

southern side has dense forests. The Maikal Hills rise on the north-west of Raipur; on the north, the land rises and merges with the Chota Nagpur Plateau, which extends north-east across Jharkhand state. On the south of Raipur lies the Deccan Plateau.

Raipur district area is monotonously plain with very scantly exposures. Lithological boundaries are mostly concealed under soil cover. As per geological survey of India, systematic geological mapping was carried out of Raipur district (Toposheets no 64/G3, G8,). On the base of the field observation, tentative stratigraphic succession of durg district area is as followed:

Laterite

Ferruginous Sandstone

Stromatolitic limestone with intercalations and pockets of shale and Intraformational

limestone breccia.

Purple Splintery shale

Flaggy bpyretiferous limestone.

Sheared acid volcanics

Deodongar Formation

Raipur Formation

CHHATTISGARH GROUP

Gunderdehi Formation

Charmuria Formation

Nandgaon Group.

4.2 SITE GEOLOGY

The project site is totally flat.

The soils at the site generally consist of yellowish clayey soil from the ground level to maximum explored depth of about 3.0m. A surficial layer of clayey soil is encountered about 1.5m depth followed by limestone.

-- Faulted Contact ?-

As per the exploration work done by Becquerel industries pvt Itd for HSCC (INDIA) LIMITED, at Raipur, during the exploration work following rock was occurred at deferent bore holes locations

LIMESTONE

The rock is grey coloured, Stromatolitic limestone. The rock occurs at comparatively higher elevation than that of the adjacent Raipur Stromatolitic limestone-shale Formation.

4.3 SEISMICITY

The seismic hazard map of India was updated in 2002 by the Bureau of Indian Standards (BIS). The project site lies in Zone II. The maximum intensity expected in these areas would be around MSK VI. The area under study and its surroundings are seismically active falls in Seismic Zone – II and the tectonic elements of the area are considered capable of generating an earthquake of moderate intensity. In seismic design Zone factor, Z of 0.10 is recommended for Zone II.

5.0 METHODOLOGY OF FIELD INVESTIGATION

The investigation was planned to obtain the subsurface stratification in the proposed project site and collect soil samples for laboratory testing to determine the engineering properties such as shear strength, along with basic engineering classification of the subsurface stratum to arrive at the foundation design parameters.

5.1 BOREHOLES

For Geotechnical investigation work, drilling rig was installed at the specified borehole location. The boreholes were progressed using Rotary Drilling machines. Boring was advanced at selected / specified borehole locations. This rig is coupled with diesel engine and has tripod and all drilling accessories. Drilling rig deployed is suitable for and has arrangement for driving as well as extracting casing, boring drilling by mud circulation method, conducting Standard Penetration Test (SPT) collection of Undisturbed Soil Sample (UDS) and Disturbed or wash Soil Sample (DS). Fig.1 illustrates a standard rotary drilling rig

The following precautions were taken;

1) Diameter of Borehole was 150mm in soil and NX size in rock, all field work was supervised by well trained / experienced persons.

- 2) Borehole was properly cleaned before taking any sample in soil.
- 3) Casing was used as per the prevailing soil conditions / rock, to stabilize the borehole.
- 4) Required field tests i. e, Standard Penetration Tests and collection of undisturbed / disturbed samples was conducted as per requirements and specified depths / levels, the same has been discussed in detail in sampling and tests in a borehole clause.
- 5) Rock core drilling was advanced using double tube core barrels with diamond bits

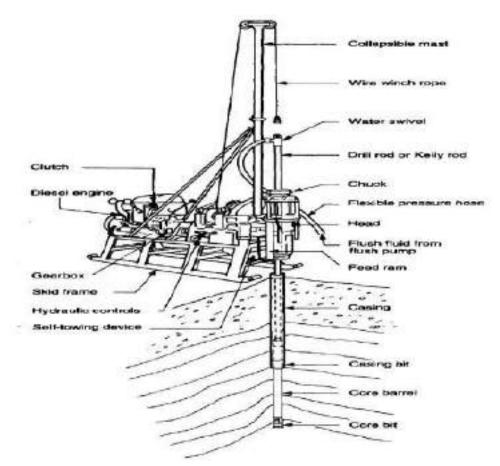


Figure 1: Layout for a Small Rotary Drilling Rig

5.2 STANDARD PENETRATION TESTS (SPT)

Standard Penetration Tests (SPT) was conducted as per IS specifications. SPT split spoon sampler of standard dimensions was driven into the soil from the borehole bottom using 63.5 kg Hammer falling from 75 cm height. The SPT weight was mechanically lifted to the specified height and allowed to fall freely on the anvil with the use of cat-head winch with one to one and half turn of the drum. Blow counts for the penetration of every 15 cm were recorded and the N is reported as the blow counts for 30 cm penetration of the sampler leaving the first 15 cm penetration as seating drive.

When the number of blows exceeded 50 to penetrate the first or second 15 cms length of the sampler, the SPT N is regarded as more than 100. The test is terminated in such case and a record of penetration of the sampler under 50 blows or more is made. SPT refusal is recorded when there is no penetration of the sampler at any stage and also when a rebound of the sounding system is recorded. SPT 'N' values are correlated with relative density of non-cohesive stratum and with consistency of cohesive stratum. SPTs were taken at 1.50 m interval. Fig.2 Illustrates general arrangement for SPT.

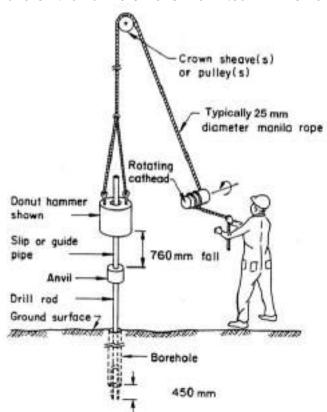


Figure 2: General arrangement for Standard Penetration Test

Correlation for C	Clayey/ Plastic Silt	Correlation for Sand / Non-Plastic Silt			
Consistency	Penetration Value	Relative Density	Penetration Value		
Very Soft	0 to 2 Blows	Very loose	0 to 4 Blows		
Soft	3 to 4 Blows	Loose	5 to 10 Blows		
Medium Stiff	5 to 8 Blows	Medium	11 to 30 Blows		
Stiff	9 to 16 Blows	Dense	31 to 50 Blows		
Very Stiff	17 to 32 Blows	Very Dense	Above 50		
Hard	Above 32				

Page 8

5.3 DISTURBED SAMPLING (SOIL) IN BOREHOLES

Disturbed soil collected in the SPT sampler was preserved in polythene covers and transported to the laboratory. One more polythene cover was provided to prevent the loss of moisture during the transit period.

5.4 UNDISTURBED SAMPLING (SOIL) IN BOREHOLES

Undisturbed samples were collected using 100 mm dia and 450 mm long MS tubes with Area ratio as specified in BIS provided with sampler head with ball check arrangement, before taking any sample tubes were properly greased. Immediately after taking an undisturbed sample in a tube, the adopter head was removed along with the disturbed material. The visible ends of the sample shall each be trimmed off any wet disturbed soil. The ends will then be coated alternately with four layers of just molten wax. More molten wax will then be added to give a total thickness of not less than 25 mm.

Undisturbed samples were collected by light hammering, all precautions were taken to prevent disturbance in transport also. If in laboratory, density is not found in order in comparison of N values, that sample was treated as disturbed sample, and tests were conducted on remolded samples and recorded in laboratory data sheet as UDS/DS-S. Collection of undisturbed samples in very hard cohesive soils / dense granular soils / gravels / cobbles / pebbles / boulders, refusal strata is practically not possible and such collected samples will not truly represent the undisturbed conditions.

5.5 ROCK CORE SAMPLES

Drilling was advanced by rotary core drilling method using double tube core barrels as per the guidelines of IS: 6926-1996. A core barrel and NX sized bits are used for drilling and recovering rock cores. Recovered rock cores were numbered serially and preserved in good quality sturdy core boxes as specified in IS: 4078-1980 as shown in fig. 3. Rock core recovery and Rock Quality Designation (RQD) were computed for every run length drilled as shown in fig. 4

Rock classification in terms of weathering and state of fractures and strength is carried out in the following manner. Tabulations given in below explain it briefly.

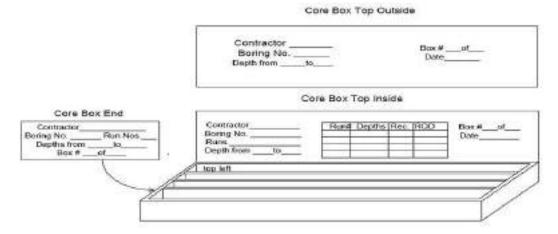


Figure 3: Figure 4: Core Box Captioning

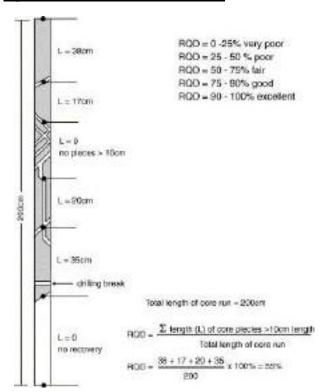


Figure 4: Percentage Core Recovery and Rock Quality Designation

SCALE OF WEATHERING GRADES OF ROCK MASS

Item	Description	Grade	Geologist Interpretation
Fresh	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces	I	CR > 90%
Slightly Weathered	Discolouration indicates weathering of rock material & discontinuity surfaces. All the rock material may be discoloured by weathering & may be somewhat weaker externally than in its fresh condition.	II	CR in between 70% to 90%

Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (07104) 265587 | +91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in

			atta var zastranatuma
Moderately Weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as core stones.	III	CR in between 50% to 70%
Highly Weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolured rock is present either as a discontinuous framework or as core stone.	IV	CR in between
Completely Weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.	٧	CR in between Zero to 10%
Residual Soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.	VI	No Core Recovery But N > 50 (Refusal)

As per IS 4464 It should be understood that all grades of weathering may not be seen in a given rock mass and that in some cases a particular grade may be present to a very small extent. Distribution of the various weathering grades of rock material in the rock mass may be related to the porosity of the rock material and the presence of open discontinuities of all types in the rock mass.

CLASSIFICATION OF ROCK WRT COMPRESSIVE STRENGTH

Rock is also classified by strength of intact rock cores collected during drilling. Rock Unconfined Compressive strength (UCS) is used to define strength of rock. Classification of rocks given in c1s 8, Table 2 of Appendix-2 of IRC: 78-2014 is reproduced below;

Rock Type	Description	Unconfined Compressive Strength (UCS) in MPa
Extremely	Cannot be scratched with knife or sharp pick. Breaking of	> 200
Strong	specimen could be done by sledge hammer only.	7 200
Very Strong	Cannot be scratched with knife or sharp pick. Breaking of	100 to 200
very snorig	specimens requires several hard blows of geologists pick.	100 10 200
Strong	Can be scratched with knife or pick with difficulty. Hard blow of	50 to 100
3110119	hammer required to detach hand specimen.	00 10 100
Moderately	Can be scratched with knife or pick, 6 mm deep gouges or	
,	grooves can be made by hand blow of geologists pick. Hand	12.5 to 50
Strong	specimen can be detached by moderate blow.	
Moderately	Can be grooved or gouged 1.5 mm deep by firm pressure on knife	5 to 12.5
Weak	or pick point. Can be broken into pieces or chips of about 2.5 mm	3 10 12.3

	maximum size by hard blows of the points of geologists pick.	
	Can be grooved or gouged easily with knife or pick point. Can be	
Work	break down in chips to pieces several cm's in size by moderate	1 25 to 5
Weak	blows of pick point. Small thin pieces can be broken by finger	1.25 to 5
	pressure.	
	Can be carved with knife. Can be broken easily with point of pick.	
Very Weak	Pieces 25 mm or more in thickness can be broken by finger	< 1.25
	pressure. Can be scratched easily by finger nail.	

5.6 GROUND WATER

Ground water table was observed after waiting for time gap of 24 hours after completion of borehole. The measured Ground water levels are recorded on the individual soil profiles.

5.7 CHEMICAL ATTACK

Results of chemical test on ground water and selected soil samples are presented in Annexure. The results indicate that ground water contains about 41.98 - 62.98 mg/l sulphates, 41.98 - 62.98 mg/l chlorides, whereas Soil sample contains about 0.030-0.054% by mass of sulphates, 0.011 - 0.041% by mass of chlorides. The ph value of soil sample is about 7.72-8.45 and that of ground water is 6.5-8.10 indicating nearly neutral condition.

IS:456-2000 recommends that precautions should be taken against chemical degradation of concrete if

- the sulphates contain of soil exceed 0.2 percent or,
- > Ground water contains more than 300 mg/l of sulphates (SO3).

Comparing the test results with these specified limits, the sulphates content of the groundwater exceed the limit whereas that for soil is within the limits. Reviewing the test results the strata at site may be treated in Class 1 category (as per table 4, IS 456-2000)

6.0 GEOTECHNICAL LABORATORY TESTING.

The laboratory testing on collected soil and rock samples had been carried out in our NABL accredited laboratory as per relevant IS codes to determine their physical and engineering properties.

6.1 SOIL SAMPLES

Sr. No.	Т	ests	IS Codes
1	Bulk	Density	By calculations
2	Natural Mo	isture Content	IS:2720 Part 2-1973, RA-2010
3	Specif	ic Gravity	IS:2720 Part 3-1980, RA-2007
4	Grain Si	ze Analysis	IS:2720 Part 4-1985, RA-2010
5		Liquid Limit(LL), Plastic Limit (PL), Plasticity Index (PI) IS:2720 Part 5-1985, RA	
6	Free Swe	ell Index (FSI)	IS:2720 Part 40-1977
7	Direct She	ear Test (DST)	IS :2720 Part 13- 1986
8	Consolidati	on Test Results	IS:2720 Part 15-1986, RA-2007
9	Chemical	pH value	IS:3025 Part 11-1983, RA-2006
10	Analysis of Water	Sulphates	IS:3025 Part 24-1986, RA-2009
11	Waldi	Chlorides	IS:3025 Part 32-1988, RA-2009
12	Chemical	pH value	IS:3025 Part 11-1988, RA-2006
13	Analysis of Soil	Sulphates	IS:3025 Part 24-1986, RA-2009
14	0011	Chlorides	IS:3025 Part 32-1988, RA-2009

6.2 ROCK CORE SAMPLES

Sr. No.	Tests	IS Codes
1	Preparation of Rock Specimen	IS: 9179
2	Point Load Strength tests	IS: 8764
3	Uniaxial Compressive Strength	IS:9143
4	Density, Water Absorption, Porosity, Sp. Gravity	IS:13030 / IS:1124

7.0 ENGINEERING ANALYSIS OF FOUNDATION SUPPORT

A suilable foundation for any structure should have an adequate factor of safety against exceeding the bearing capacity of the supporting soil. also the vertical movements due to compression of the soils should be within tolerable limits for the structure. we consider that

foundtion designed in accordance with the recommendations given herein will satisfy these criteria.

Considering the nature of sub-surface strata, type of proposed structures, expected scour and loads on foundations, Open foundation is recommended;

For satisfactory performance of a foundation, the following criteria must be satisfied;

- (i) The foundation must not fail in shear.
- (ii)The foundation must not settle by an amount more than the permissible settlement.

The smaller of the bearing pressure values obtained according to (i) and (ii) above, is adopted as the allowable bearing capacity.

Design Considerations for Open Foundations

Permissible settlement in soil (Non Plastic / Plastic)	50 mm / 75 mm
Permissible settlement in rock	12 mm
Water Table correction factor	0.50
Average Design Parameters	as per clause 5.2 to 5.6.

Depth of Open Foundation in Soil

A foundation must have an adequate depth from considerations of adverse environmental influences. It must also be economically feasible in terms of overall structure.

Depth of foundations in soil shall be decided as per clause 7 of IS: 1904 for special cases like; where volume change is expected / scour is expected / foundations on sloping ground / foundation on made or filled up ground / frost action is expected etc. All foundations shall extend to a depth of at least 0.5 m below natural ground level. Where filled up materials are encountered, foundations should rest either on natural ground or engineered fill. Where filled material is exposed at the founding level, excavation should be carried out up to the level of natural soils. Backfill of granular materials should be placed in layers and compacted thoroughly. In case of small bridges / culverts, top of bottom slab shall extend 0.3 m depth below bed level as per IRC: SP-13.

Depth of Open Foundation in Rock

The founding levels should fix considering an embedment of at least 0.60 m into the sound rock and 1.50 m in to the disintegrated / weathered soft rock.

As per clause 705.2.2 (a) of IRC: 78; for moderately strong to extremely strong rock with an ultimate crushing strength of 125 kg/cm² or above or where it is not possible to take core to get the UCS but

extrapolated SPT N value is more than 500 the depth of foundation shall be 0.60 m. below rock surface.

However, depth of foundation is 1.50 m. in moderately weak rocks having with an ultimate crushing strength between 125 kg/cm² to 25 kg/cm² or where it is not possible to take core to get the UCS but extrapolated SPT N value is more than 100 but less than 500. In other cases the embedment of the foundations shall be decided keeping in view the overall characteristics like fissures, bedding planes, cavities, ultimate crushing strength, proposed treatment of foundation strata etc.

8.0 BEARING CAPACITY

8.1 Bearing Capacity for Open Foundations in Soil

Bearing capacity for shallow foundations in soil has been analyzed in accordance with IS: 6403-1981, which is based on, modified Terzaghi's classical approach. The weighted average of shear parameters for various strata up to a significant influence zone of 1.5 B (B = width of the foundation) below the foundation level is used in the analysis. Considering the fluctuation of ground water, it is assumed that water table will be at existing ground level and accordingly the water table correction is applied. A factor of safety of 2.5 is selected based on clause 706.3.1.1.1 of IRC 78-2014 to estimate the net safe bearing capacity from ultimate net bearing capacity.

Standard Penetration Test (SPT) results are also used to determine the safe bearing capacity of shallow foundation in accordance with IS: 6403-1981 for non-cohesive soil, hard clay. While using this approach, the N value was corrected, wherever applicable, below the footing base to at least 1.5B below the base to account for the effects of energy ratio, adopted boring procedure, dilation for submerged Silty fine sands /fine sands as well as that due to the overburden pressure (Reference: IS: 2131-1981, "Foundation Analysis and Design" by J. E. Bowles).

8.1.1 Bearing Capacity as per I.S 6403-1981 R.A.2002 from shear failure consideration

❖ For local shear failure:

Q'd = 2/3*C*N'C*sC*dC*iC + q*(N'q-1)*sq*dq*iq + 0.5*B*Y*N'r*sr*dr*ir*W'

For general shear failure:

Qd = C*Nc*sc*dc*ic + q*(Nq-1)*sq*dq*iq + 0.5*B*Y*Nr*sr*dr*ir*W'

Where, Q'd = Net ultimate Bearing Capacity based on local shear failure

Qd= Net ultimate Bearing Capacity based on local shear failure

C=Cohesion.

φ=Angle of Internal Friction.

 N_c , N_q , N_γ =Bearing Capacity Factors Based on ϕ .

 S_c , S_q , S_γ =Shape Factors

 d_c , d_q , d_γ =Shape Factors

 i_c , i_q , i_γ =Shape Factors

q= Overburden Stress at the Bottom of the Foundation.

 γ = Unit weight of subsoil

B= Width of foundation

W'= Correction factor for water table location

Where factors are calculated as follows

Shape Factor

Shape of Base	Sc	Sq	Sγ	
Continuous strip	1	1	1	
Rectangle	1 + 0.2B/L	1 + 0.2B/L	1-0.4B/L	
Square	1.3	1.2	0.8	
Circle	1.3	1.2	0.6	

Depth factor

dc =	1+0.2(D _f /B)(Nø) ^{1/2}
	1 for Ø <10 ⁰
dq = dγ =	1+0.1(D _f /B)(Nø) ^{1/2} for Ø>10 ⁰

❖ Inclination factor

Inclination Factor	
$i_c = i_q =$	(1-a/90) ²
iγ=	(1-α/φ)2

Appropriate values have been substituted into the above mention bearing capacity equation to compute the net ultimate bearing capacity. A factor of safety of 2.5 is selected based on clause 706.3.1.1.1 of IRC 78-2014 to estimate the net safe bearing capacity from ultimate net bearing capacity. The values have been checked to determine the settlement of the foundation under the safe bearing pressure. The allowable bearing pressure has been checked as the lower of the two

values computed from the bearing capacity shear failure criteria as well as that computed from the tolerable settlement criteria.

8.1.2 Bearing Capacity as per I.S 6403-1981 R.A.2002 for Cohesionless Soil (When C = 0)

As per clause 5.2.2 of IS:6403-1981 (Determination of bearing capacity of shallow foundations), for cohesionless soil the net ultimate bearing capacity is given based on Standard Penetration Resistance Value as follows

Qd = q*(Nq-1)*sq*dq*iq + 0.5*B*Y*Nr*sr*dr*ir*W'

Where φ may be read from Fig. 1,page no11 in 1.S 6403-1981 R.A.2002, N_q , N_γ may be read from Table 1, S_q d_q , i_q , S_γ d_γ , i_γ and W' may be obtained as in clause 5.1 I.S 6403-1981 R.A.2002

8.1.3 Bearing Capacity as per I.S 6403-1981 R.A.2002 for Cohesive Soil (When $\phi = 0$)

Homogeneous Layer

As per clause 5.3.1 of IS:6403-1981 (Determination of bearing capacity of shallow foundations), for fairly homogeneous soil the net ultimate bearing capacity is given as;

Qd = C.Nc.sc.dc. ic

where Nc = 5.14

<u>Settlement for Open Foundations</u>

The magnitude of settlement, when foundation loads are applied, depends upon the compressibility of the underlying strata and rigidity of the substructure. In cohesive deposition, the post construction settlement is caused by dissipation of pore pressures and hence is time dependent so that consolidation settlement is computed for such soils using Terzaghi's one-dimensional consolidation theory.

The immediate settlements in clays are estimated using the elastic theory considering the effect of a rigid stratum underlying the foundation soils (Reference: "Foundation Analysis and Design" by J.E.Bowles). The immediate settlements in cohesion-less soil are estimated using elastic theory as mentioned above or using SPT value as per IS: 8009 (Part 1).

Settlement analysis has been performed based on S.P.T values in accordance with Clause 9. 1. 4 of I.S 8009 (Part-1) – 1976 RA Fig.9.

If clay is not recompressed

$$Sc = \frac{Ht}{(1+e_0)} Cc \log_{10} \left(\frac{p_0 + \Delta p}{p_0} \right)$$

where

Sc = consolidation settlement

e₀ = Initial void ratio

 C_c = Compression Index

P₀ = initial effective pressure

 Δp = Pressure increment.

8.2 Bearing Capacity of Open Foundations on Rock

Analysis for allowable bearing capacity on rock has been done by the following method.

8.2.1 Safe Bearing Pressure from the RMR System:

Analysis has been carried out using the RMR also known as Geo-mechanics classification by considering various parameters such as uni-axial compressive strength, RQD, spacing and condition of discontinuities and ground water condition. The correlation between the RMR value and allowable pressure has been given in Table –3 IS: 12070. This will ensure settlement of raft foundation to be less than 12 mm. *IS* 12070 does not mention width or size and shape of foundation for calculating net safe bearing capacity. Also in the referred IS code there is no mention of immediate settlement.

Net Safe Bearing Pressures Based on RMR:

Classification No.	I	II	III	IV	٧
Description of Rock	Very Good	Good	Fair	Poor	Very Poor
RMR	100-81	80-61	60-41	40-21	20-0
qns (t/m2)	600-448	448-288	280-141	135 - 48	45-30

The RMR for use in Table should be the average within a depth below foundation level equal to the width of foundation, provided the RMR is fairly uniform within the depth. If the upper part of the rock, within a depth of about one fourth of the width of foundation, is of lower quality the value of this part should be used or the inferior rock should be removed. Since these values are based on limiting the settlement, they should not be increased if the foundation is embedded into the rock.

IS 13365 (part I) "Quantitative classification system of rock mass": This code defines various parameters for obtaining RMR values based on rock core logging sheet and laboratory test of rock cores.

The rock mass rating should be determined as an algebraic sum of ratings for all the parameters given in Table 2 after adjustments for orientation of discontinuities given. The sum of Items 1 to 5 is called Rock Condition Rating (RCR), which discounts the effect of compressive strength of intact rock material and orientation of joints. This is also called as the modified RMR

	PARA	AMETER		Rang	e of values //	RATINGS			
	Strength of intact	Point-load strength index	> 10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	uniaxial	his low ra compr. s proferre	strengt
1	rock material	Uniaxial com- pressive strength	> 250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 MPa	1-5 MPa	<1 MPa
		RATING	15	12	7	4	2	1	0
_	Drill core q	uality RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%		< 25%	(1).
2		RATING	20	17	13	8		5	
	Spacing of discontinuities		> 2 m	0.6 - 2 m	200 - 600 mm	60 - 200 mm	1 8	60 mm	10
3	RATING		20	15	10	8		5	
	Condition	Length, persistence < 1 m 1		1 - 3 m	3 - 10 m	10 - 20 m	1 8	> 20 m	
		Rating	6	4	2	1		0	
		Separation	none	< 0.1 mm	0.1 - 1 mm	1 - 5 mm		> 5 mm	à Q
		Rating	6	5	4	1	0		
		Roughness	very rough	rough	slightly rough	smooth	sli	ckensid	ed
4	of discon-	Rating	6	6	3	1		0	
	tinuities	Infilling (gouge)	none	Hard < 5 mm	filling > 5 mm	< 5 mm	oft filling	> 5 mm	Ee
		Rating	6	4	2	2		0	
		Weathering	unweathered	slightly w.	moderately w.	highly w.	de	compos	ed
		Rating	6	5	3	1		0	
	Ground	Inflow per 10 m tunnel length none		< 10 litres/min	10 - 25 litres/min	n 25 - 125 litres/min > 125 lit		5 litres	/min
5	water	ρ _w /σ1	0	0 - 0.1	0.1 - 0.2	0.2 - 0.5		> 0.5	
	0.000.00.00	General conditions	completely dry	damp	wet	dripping	3	flowing	
		RATING	15	10	7	4		0	

= joint water pressure; σ1 = major principal stress

RATING ADJUSTMENT FOR DISCONTINUITY ORIENTATIONS

		Very favourable	Favourable	Fair	Unfavourable	Very unfavourable
	Tunnels	0	-2	-5	-10	-12
RATINGS	Foundations	0	-2	-7	-15	-25
	Slopes	0	-5	-25	-50	-60

ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS

Rating	100 - 81	80 - 61	60 - 41	40 - 21	< 20
Class No.	- D	II .	III	IV	V
Description	VERY GOOD	GOOD	FAIR	POOR	VERY POOR

9.0 GENERALISED CONSIDERATION FOR CONSTRUCTION OF FOUNDATION

Excavation:

It is advisable to provide suitable slope protection method to keep sides of deep excavation from sloughing.

Side slopes will depend on actual site condition & extent of ingress of water.

Safe Slopes for excavated surfaces as below:-

Slightly weathered to Fresh Rock - 0.25 H to 1.0 V

Highly to moderately weathered Rock - 0.50 H to 1.0 V

Completely disintegrated Rock as Murrum - 1.00 H to 1.0 V

Silty Clay / sandy clayey silt - 1.50 H to 1.0 V

Following General values may be adopted for Lateral pressure

 $K_a = 0.3$

 $K_p = 3.3$

Backfill:

The material used for backfilling shall be non-expansive, size of particles shall be <20 mm and preferably confirming to soil groups of SC/GC/SM of IS soil classifications. The material shall be spread and levelled in layers of not exceeding 225 mm. Each layer shall be compacted by vibratory roller of around 10-12 tonnes to 95% of the modified Proctor density.

Special Precautions

It is essential to ensure that trees and other landscaped area will be about 3 m away from the building boundary. Area around the building shall have proper slope so that the water is drained away from the building boundary.

For foundations placed on Weathered Rock / Murrum, excavation up to required depth shall be carried out by Backhoe / hydraulic excavator and the seat of 30 cm desired for the footing in founding strata may be developed manually. This will avoid loosening of founding strata layer by sharp edge teeth of hydraulic excavator.

In case the footing are rested to be rock the excavation may be continued up to that depth by Excavator bucket and a seat of 30 cm for the individual footing in the founding strata may be provided either manual means or by the hydraulic excavator.

10.0 CONCLUSION / RECOMMENDATIONS

10.1.Open Foundation

SR.NO	LOCATION	BORE HOLE	TYPE OF FOOTING	DIMENSIONS (m2)	DEPTH (m)	ALLOWABLE BEARING CAPACITY (T/m2)
				2mx2m	1.50 m	10
				2111X2111	3.0 m	12
			ISOLATED	3mx3m	1.50 m	9
Type -1B	BH-01	BOLATED	SHIXSHI	3.0 m	11	
'	1 Left Side	ВП-ОТ		4mx4m	1.50 m	8
				411184111	3.0 m	11
			DAET	10mx5m	1.50 m	11
			RAFT	TOTTIXSITI	3.0 m	12
		BH-02		2mx2m	1.50 m	10
			ISOLATED	2111X2111	3.0 m	12
				ATED 3mx3m 4mx4m	1.50 m	9
2	Type -1B				3.0 m	11
2	Front				1.50 m	8
					3.0 m	12
			RAFT	10mx5m	1.50 m	12
			KALI	TOTTIXSTTI	3.0m	13
				2mx2m	1.50 m	10
				ZITIXZITI	3.0 m	12
			ISOLATED	3mx3m	1.50 m	9
3	Type -1B	BH-03	ISOLATED	SITIXSITI	3.0 m	12
	Front	כט-ו ום		4mx4m	1.50 m	8
				411184111	3.0 m	11
			RAFT	10mx5m	1.50 m	12
			IVAI I	10111/0111	3.0m	13

		1				AN ISO 9001-0
				2mx2m	1.50 m	11
				211182111	3.0 m	14
			ISOLATED	3mx3m	1.50 m	10
4	Type 1 A	BH-04	ISOLAILD	SITIXSITI	3.0 m	12
4	Front	B11-04		4mx4m	1.50 m	9
				4111X4111	3.0 m	12
			RAFT	10mx5m	1.50 m	8
			KALI	TOTTIXSTTI	3.0m	10
				2mx2m	1.50 m	13
				2111X2111	3.0 m	14
			ISOLATED	2001/200	1.50 m	10
5	Type 1 A	DI LOC	ISOLATED	3mx3m	3.0 m	13
3	Front	BH-05		4	1.50 m	9
				4mx4m	3.0 m	13
			DAET	10 5	1.50 m	9
			RAFT	10mx5m	3.0m	11
_				0 0	1.50 m	10
	6 Type 3 A Left Side			2mx2m	3.0 m	36
			1001.4755	3mx3m	1.50 m	11
6			ISOLATED		3.0 m	34
				4mx4m	1.50 m	10
					3.0 m	34
			RAFT	10mx5m	1.50 m	10
					1.50 m	10
				2mx2m	3.0 m	12
			ICOLATED	3mx3m	1.50 m	9
7	Type 3 A	511.07	ISOLATED		3.0 m	11
7	Left Side	BH-07		4mx4m	1.50 m	8
					3.0 m	10
			DAFT	10	1.50 m	8
			RAFT	10mx5m	3.0 m	9
				2mx2m	1.50 m	10
				ZITIXZITI	3.0 m	40
	T		ICOL ATED	3mx3m	1.50 m	8
8	Type 4 A Left Side	BH-08	ISOLATED	SITIXSITI	3.0 m	35
	Len side			4mx4m	1.50 m	8
				4111X4111	3.0 m	45
			RAFT	10mx5m	1.50 m	7
				2mx2m	1.50 m	11
	To use of A.A.			ΖΙΙΙΧΖΙΙΙ	3.0 m	48
9	Type 4 A Left Side	BH-09	ISOLATED	3mv2m	1.50 m	9
	LOTTOIGE			3mx3m	3.0 m	48
				4mx4m	1.50 m	8

10 Type 4 A Left Side							
10 Type 4 A Left Side BH-10 ISOLATED ISOLATED 3mx3m 1.50 m 9						3.0 m	48
10			BH-10	ISOLATED	OmeryOme	1.50 m	10
10					Z111XZ111	3.0 m	38
10 Leff Side BH-10 BH-10 3.0 m 38 1.50 m 9					2mv2m	1.50 m	9
Amx4m	11				SHIXSHI	3.0 m	38
RAFT 10mx5m 1.50 m 8		2011 3100			4my4m	1.50 m	9
Director Bungalow Front Side					4111X4111	3.0 m	38
Director Bungalow Front Side				RAFT	10mx5m	1.50 m	8
11 Director Bungalow Front Side BH-11 ISOLATED 3mx3m 1.50 m 10					2mv2m	1.50 m	12
11 Bungalow Front Side BH-11 ISOLATED 3mx3m 3.0 m 45			BH-11	ISOLATED	ZITIXZITI	3.0 m	40
RAFT 10mx5m 1.50 m 9 3.0 m 47 47 47 1.50 m 8 1.50 m 9 3.0 m 47 47	1 1	Bungalow			3mv3m	1.50 m	10
1.50 m 9 3.0 m 47	11			BOLAILD	SITIXSITI	3.0 m	45
RAFT 10mx5m 1.50 m 8					4mv4m	1.50 m	9
Director Bungalow Left Side BH-12 BH-1					4111X4111	3.0 m	47
Director Bungalow Left Side BH-12 BH-12 BH-12 BH-12 SOLATED 3mx3m 1.50 m 9				RAFT 10mx5m		1.50 m	8
Director Bungalow Left Side BH-12 BH-1			BH-12	ISOLATED	2mv2m	1.50 m	9
Director Bungalow Left Side BH-12 BH-12 SOLATED 3mx3m 3.0 m 45					ZITIXZITI	3.0 m	40
12 Bungalow Left Side BH-12 4mx4m 3.0 m 45 RAFT 10mx5m 7 RAFT 10mx5m 8 3.0 m 45 1.50 m 9 3.0 m 47 1.50 m 8 3.0 m 45 1.50 m 10					3mv3m	1.50 m	9
Left Side 4mx4m 1.50 m 9 3.0 m 47 RAFT 10mx5m 1.50 m 9 3.0 m 47 1.50 m 8 3.0 m 45 1.50 m 10	12				SITIXSITI	3.0 m	45
RAFT 10mx5m 3.0 m 47 1.50 m 8 3.0 m 45 1.50 m 10	12				4mv4m	1.50 m	9
RAFT 10mx5m 3.0 m 45 2mx2m 1.50 m 10					411174111	3.0 m	47
3.0 m 45 2mx2m 1.50 m 10				DAET	10my5m	1.50 m	8
2mx2m				KALI	TOTTIXOTTI	3.0 m	45
3.0 m 40	13	Director Bungalow Left Side	ВН-13		2mx2m	1.50 m	10
9.0						3.0 m	40
Director ISOLATED 3mx3m 1.50 m 9				ISOLATED	3mx3m	1.50 m	9
				ISOLAILD		3.0 m	40
1 1 50 100 1						1.50 m	9
4111X4111 3.0 m 45					411184111	3.0 m	45
RAFT 10mx5m 1.50 m 8				DAET	10my/Fm	1.50 m	8
3.0 m 45				I KALI	HICKITIOT	3.0 m	45

For Becquerel Industries Pvt. Ltd.

Mr Manish Bawankule

Mr. P. S. Chauhan

(B.E Civil, M-Tech Geotech)

(Quality Head) Geotech & Geology

- This report is issued based on the subsoil condition revealed at the location of boreholes and laboratory tests performed on recovered samples. If during construction of foundations it is observed that sub soil conditions vary from those revealed during investigation it is essential that Becquerel Industries Pvt. Ltd. Nagpur shall be contacted so that on confirmation supplementary report shall be issued.
- Structural designer should ensure overlap between adjacent foundations is minimum. To minimize overlap minimum clear distance between two adjacent foundations shall not be less than minimum width of the two.

11.0 REFERENCES

Sr. No.	IS Codes No	Title
1	IS: 1892-1979	Code of Practice for subsurface investigation for foundations.
2	IS: 1498-1970	Classification and Identification of soils for general Engineering Purpose.
3	IS: 2131-1981	Method for Standard Penetration Test (SPT) for Soils.
4	IS: 2132-1986	Code of Practice for Thin - Walled tube sampling of Soils.
5	IS : 4464-1985	Code of Practice for presentation of drilling information and core description in foundation investigation.
6	IS: 5313-1980	Guide for core drilling observations.
7	IS: 4078-1980	Code of Practice for indexing and storage of drill cores
8	IS : 6926-1996	Diamond core drilling – Site investigation for river valley projects - code of Practice.
9	IS: 6935-1973	Method of determination of water level in a bore hole
10	IS : 6065(part-1) -1985	Recommendations for the preparation of Geological and Geotechnical maps for river valley projects
Sr. No.	воок	Title
1	N. V. Nayak	Foundation Design Manual
2	Joseph E. Bowles	Foundation Analysis and Design

ANNEXURE

1.0 SAMPLE CALCULATIONS

	SBC C	ALCULATION FOR BH-1 D	epth- 1.50m				
Name of project	"Geotechnical Inves	struction of Residential Bloc	cks AIMS Raipur				
	(Chhattisgarh)."						
Location	Type 1 B Left Side						
Design as per	IS:6403-1981 CLAUS	E NO 5.3 Cohesive Soil (wh	en Ø=0)				
The net ultimo	ate bearing capacity	immediately after constru	ction on fairly saturated ho	omogeneous			
	cohesive soil	s shall be calculated from	following formula				
In Case for		Qd = c*Nc*	*sc*dc*ic				
Cohesive Soil							
Qd = ULTIMATE BEARING CAPACITY IN (t/ m²)							
C =	Assuming cohession	in t/m2 =		4.50			
D _f =	Depth of foundation	n in (m)		1.5			
B =	Width/daimeter of	footing in (m)		2			
L =	Length of footing in	(m)		2			
$N_C = \frac{\text{Bearing capacity factors due to cohesion, surcharge and weight of subsoil}}{N_C = \frac{S}{N_C}}$							
s _c =		are footing = 1+ 0.2(B/L)		1.20			
	'	DEPTH FACTORS CALCULA	TION	1			
d _c =		(1+ (0.2)*(Df/B)*(√ NØ)		1.15			
i _c =	i _q =	(1- a/90) ²		1			
	Qc	•	31.92				
С	onsidering factor of so	3					
SAF	E BEARING CAPACITY	10.64					
Therefore Safe Be	aring Capacity say,	11	l t/m2				
		rea, Butibori, Nagpur - 441 108 E-mail: spectro@bipIndt.com, V					

SAFE BEARING CAPACITY CALCULAION AS PER SETTLEMENT CRITERIA					
AS PER IS 8009-1 CLOUSE No. 9.0					
BORE HOLE NO. :	BH-1				
1) TYPE OF FOOTING	ISOLATED				
2) LENGTH OF FOOTING = L (m)	2.00				
3) WIDTH OF FOOTING = B (m)	2.00				
4) DEPTH OF FOOTING BELOW GROUND LEVEL = D (m)	1.50				
c) DENSITY OF SOIL AT FOUNDATION \(\gamma\) (t/m3)	1.89				
6) $q = \gamma^* D = OVER BURDEN SURCHARGE (t/m2)$	2.84				
SAY Q safe = (t/m^2)	10.00				
CHECK FOR SETTLEMENT CRITERIA					
D					
K B X					
MID					
DEPTH					
DATA					
) CONSTANT OF COMPRESSIBILITY = Cc =	0.147				
2) INTIAL VOID RATIO = eo =	0.67				
B) DENSITY OF SOIL = γ (t/m3)	1.82				
P) NET LOAD AT BASE = $(q_{SAFE} - q)$ (t/m2)	7.17				
B) ORIGINAL OVERBURDEN PRESSURE BELOW G.L. AT MID DEPTH (m)	3.50				
So, Po = (†/m2)	6.62				
4) AREA AT BASE (m2)	4.00				
5) AREA AT MID DEPTH (m2)	16.00				
6) INCREASE OF PRESSURE AT MID DEPTH = Δp (t/m2)	1.79				
Where, Δp = Net load*Area at Base/Area at mid depth					
CALCULATION:					
$S = (H/1+e_0)*Cc*log_{10}[(PO+\Delta p)/PO]$					
where, H = Depth of compresible layer below foundation in cm	300.00 2.95				
So, S = cm					
S = mm	29.47				
CORRECTION OF RIGIDITY FACTOR AND DEPTH FACTOR =					
Rigidity factor					
Depth factor					
FINAL SETTLEMENT = S_f =	0.97				
S _f = S*Rigidity factor*Depth factor	22.87				
22.87 mm which is less than 25mm hence, ok					
RECOMMENDED SAFE BEARING CAPACITY BASED ON SETTLEMENT CRITERIA IS= t/m ²	10.00				
Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (07104) 2655 +91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in					
- / 1 / 30/ / 37 30 1 E mail specific @ sipiliar.com, 11 05 3110, www.sipiliar.in	n 00				

SBC CALCULATION FOR BH-6 Depth- 3.0m								
Name of project	"Geotechnical Investigation for Proposed Construction of Residential Blocks AIIMS Raipur,							
	(Chhattisgarh)."							
Location	Type 3 A Left Side							
Design as per	IS :6403-1981 CLAUSE NO 5.2							

VOID RATIO:- Void ratio of a soil mass is defined as the ratio of volume of voids to the volume of solids.

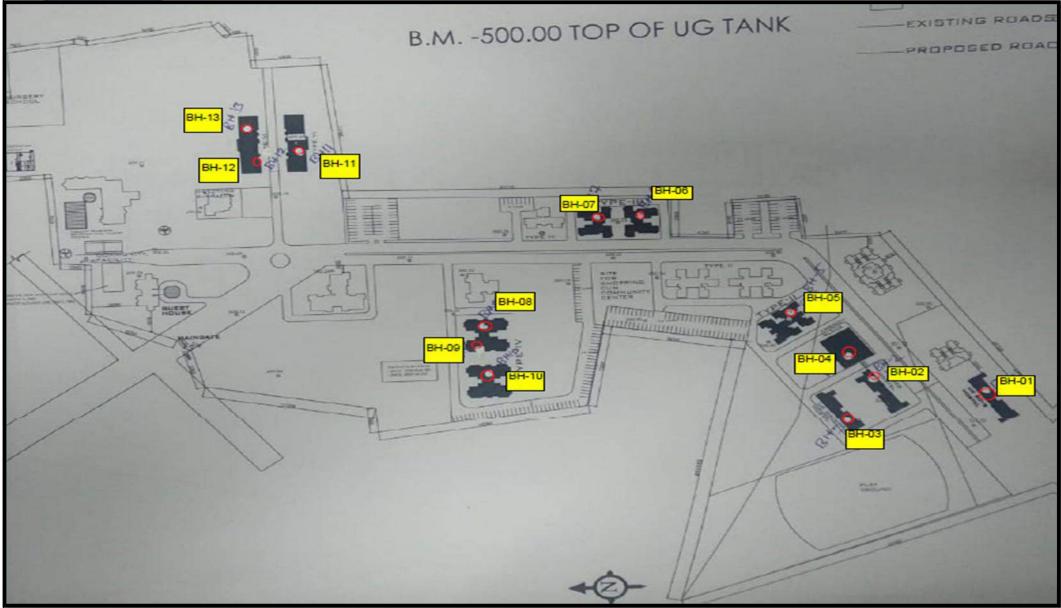
As per Fig.1 of IS: 6403-1981, the \emptyset value for N>50 is 41°00′, As per classification, adapting \emptyset as 27°00′.

	<u> </u>						
In Case for SPT Sample	Qd = q*(Nq-1)*sq*dq*iq + 0.5*B*Y*Nr*sr*dr*ir*W'						
Qd =		ULTIMATE BEARING CA	PACITY IN (t/ m²)				
Ø =	Angle of internal fricti	on of soil in (degree)		27.00			
D _f =	Depth of foundation	in (m)		3			
Υ =	Υ = Unit Weight of subsoil in submerged condition in (t/m ³)						
q =	5.4						
B =	B = Width/daimeter of footing in (m)						
L =	Length of footing in (m)						
N _q =	Bearing capacity fac	13.76					
N _r =	Bearing capacity fac	15.49					
s _q =	Shape factor for squa	1.2					
s _r =	Shape factor for squa	are footing =		0.60			
DEPTH FACTORS CALCULATION							
√NQ =	$\sqrt{\tan^2(\pi/4+\varnothing/2)} =$	tan(45 + Ø/2) =	tan(45 + Ø/2) =	1.6319			
d _c =		(1+ (0.2)*(Df/B)*(√ NØ	٥)	1.4896			
d _q =	d _r =	1	FOR Ø < 10°	1			
d _q =	d _r =	1+ (0.1*D _f /B)*√NØ	FOR Ø > 10°	1.2448			
i _c =	i _q =	(1- a/90) ²		1			
i _r =		1					
W' =	W' = Water table effect						
		<u> </u> *dq*iq + 0.5*B* Y *Nr*sr*dr*		107.55			
	considering factor of sa		3 35.85				
	FE BEARING CAPACITY I						
merelore sole be	earing Capacity say,	30	t/m2				

Note: As per IS-1904-1986, The permissible Settlement for Isolated Footing resting on sand and hard clay is 50mm, Fig 9 of IS 8009-Part I (checking for 25mm settlement), Considering above N Value and width of the footing 2.00 m and depth factor 0.82 and water table effect, the foundation settlement per unit pressure i.e. 10 T/m2 is 5.5 mm. So for 36t/m² bearing pressure, settlement would be about 19.02 mm (which is less than maximum permissible settlement 25mm)

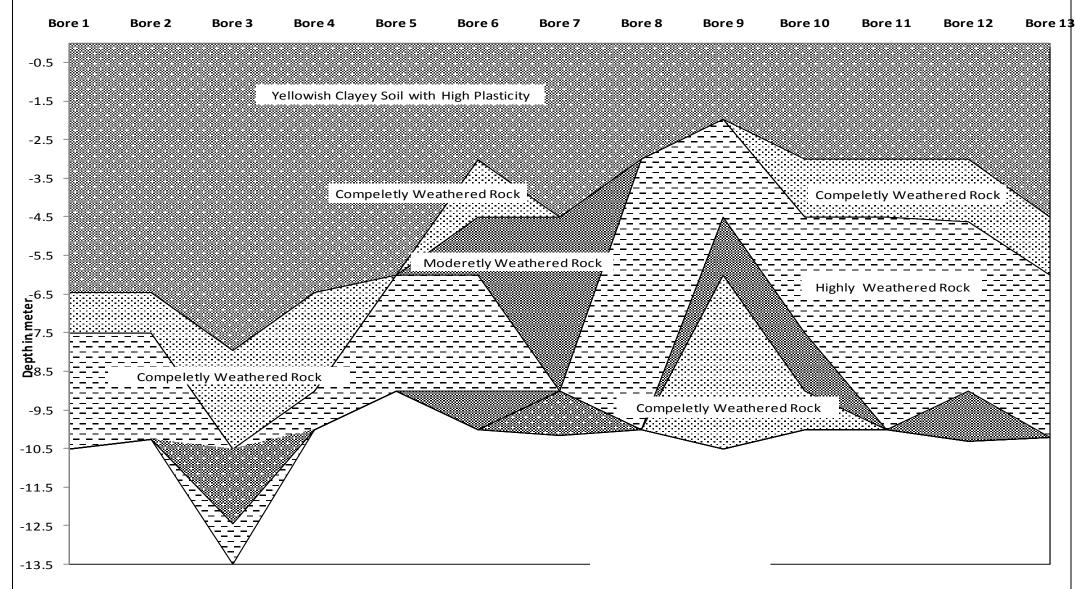
A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (07104) 265587 | +91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in

					RMR Tal	ole					
		Individual Rating									Net Safe
	Depth	1	П	III	IV	V	VI	Total			Bearing
Bore No.	below GL In					Ground	Fracture	Rating	RMR Class No.	Rock	Pressure
	meter	Strength	RQD	Spacing of	Condition of	Water	Orientation	RMR	NO.	Description	qns
				Discontinuities	Discontinuities	Condition	Rating				tons/m ²
	6.45-7.5	12	3	8	0	0	-7	16	V	Very poor	42
BH-1	7.5-9.0	12	3	8	10	0	-7	26	IV	Poor	71
	9.0-10.5	12	3	8	10	0	-7	26	IV	Poor	71
BH-2	7.5-9.0	12	3	8	10	0	-7	26	IV	Poor	71
	9.0-10.25	1	3	8	0	0	-7	5	V	Very poor	34
BH-4	7.5-9.0	12	3	8	0	0	-7	16	V	Very poor	42
DIT 4	9.0-10.00	1	3	8	10	0	-7	15	V	Very poor	41
BH-5	7.5-9.0	12	3	8	0	0	-7	16	V	Very poor	42
DITO	9.0-10.5	12	3	8	10	0	-7	26	IV	Poor	71
	4.5-6	4	8	9	10	0	-7	18	V	Very poor	44
BH-6	6.00-7.5	4	3	8	10	0	-7	18	V	Very poor	44
DIT-0	7.5-9.0	4	3	8	10	0	-7	18	V	Very poor	44
	9.0-10.0	2	13	8	20	0	-7	36	IV	Poor	117
	4.5-6.0	7	8	8	20	0	-7	36	IV	Poor	117
BH-7	6.0-7.5	7	13	8	20	0	-7	41	IV	Poor	141
	7.5-9.0	4	8	8	20	0	-7	33	IV	Poor	103
	3.0-4.5	7	3	8	0	0	-7	11	V	Very poor	38
BH-8	4.5-6.0	4	8	8	10	0	-7	23	IV	Poor	57
	6.0-7.5	12	3	8	10	0	-7	26	IV	Poor	71
	7.5-9.0	4	8	8	10	0	-7	23	IV	Poor	57
	9.0-10.0	7	3	8	10	0	-7	21	V	Very poor	48
	1.97-3.0	7	3	8	10	0	-7	21	V	Very poor	48
	3.0-4.5	7	3	8	10	0	-7	21	V	Very poor	48
BH-9	4.5-6.0	7	13	8	20	0	-7	41	IV	Poor	141
DI 1-7	6.0-7.5	4	13	8	10	0	-7	28	IV	Poor	80
	7.5-9.0	12	3	8	10	0	-7	26	IV	Poor	71
	9.0-10.5	4	3	8	10	0	-7	18	V	Very poor	44
	3.45-4.5	7	3	8	0	0	-7	11	V	Very poor	38
BH-10	4.5-6.0	7	3	8	0	0	-7	11	V	Very poor	38
	6.0-7.5	7	8	8	10	0	-7	26	IV	Poor	71
	7.5-9.0	7	8	8	10	0	-7	26	IV	Poor	71
	9.0-10.5	7	3	8	10	0	-7	21	V	Very poor	48
BH-11	4.5-6.0	12	3	8	10	0	-7	26	IV	Poor	71
	6.0-7.5	7	8	8	10	0	-7	26	IV	Poor	71
	7.5-9.0	7	8	8	10	0	-7	26	IV	Poor	71
	9.0-10.5	4	3	8	10	0	-7	18	V	Very poor	44
	4.62-6.0	4	3	8	0	0	-7	8	V	Very poor	36
BH-12	6.0-7.5	7	3	8	10	0	-7	21	V	Very poor	48
DI I-1Z	7.5-9.0	12	3	8	10	0	-7	26	IV	Poor	71
	9.0-10.30	4	13	8	20	0	-7	38	IV	Poor	126
	6.0-7.5	12	3	8	10	0	-7	26	IV	Poor	71
BH-13	7.5-9.0	12	8	8	10	0	-7	31	IV	Poor	94
	9.0-10.20	7	3	8	0	0	-7	11	٧	Very poor	38
.,,,	507 707 50-7	L IIIGII. J	JCC110@D1	pinai.com, 11	CD JIIC. WWW	ipiiidi.ii				1 49	C 00



2.0 PLAN OF WORK /LOCATION

Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (07104) 265587 | +91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in



3.0 GEOLOGICAL RROFILE

4.0 BORE LOGES

Client: HSCC (INDIA) LIMITED Date: 19.07.2019

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G

Project No. 2262

Elevation: 0 Water Level: 3 M Drilling Method: - Nx core drilling Finished: 05.07.2019

		, u.,	OII . •			· ·	· · · ·			9		iiou.			- un	9			113110	<i>.</i>	-			
										٥						LAB	OR/	ATOF	RY T	ΓES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Type	Elevation	SPT - N	-55 -256T Graph	Core Recovery %	RQD%	% & 25 75	% Д 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	1	Very Stiff to Hard Yellowish CLAY of High Plasticity	SS																		
1 3	•		UDS-1	1		SS								9.4	13.4	77.2	59.7	19.3	40.4	41.6	СН	.22	10	
3				7		SS			27															
			SPT-1	1		SS		27	Î					1.8	17.2	81	57.7	19.6	38.1		СН			
4				H		SS																		
=	Ť		UDS-2	H		SS						-		0.9	 _19.8 	 79.4 	55	20	35	41.6	CH I			
5				1		SS			34															
			SPT-2	4		SS	-6.45 6.45	34						0.4	10.6	88.9	54	19.5	34.5		СН			
7			1-8		Very week to week,greyish,fine grained, completly weathered LIMESTONE.	RR	-7.50			10	-													0
7 8 8			9-23		Very week to	RR	7.50			37	-													0
10			24-29			RR	-10.50)		53	22													0
11					End of Borehole		10.50																	
12																								
13																								
14																								
15																								
75	1		- Call		DIDE START									Dro	nare	d by								

BECQUEREL

BIPL ,NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMITED Date: 19.07.2019

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G.

Project No. 2262

Elevation: 0 Water Level: 2.50 M Drilling Method: - Nx core drilling Finished: 03.07.2019

										. 0						LAB	ORA	TOF	RY 1	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Туре	Elevation	N - LdS	- 55 - 56 57 57 57 57	Core Recovery %	RQD%	% 65 25 75	% 0 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	1	Very Stiff to Hard Yellowish CLAY of High Plasticity	SS																		
2	ŧ		UDS-1	1		SS								3.2	17.7	79.1 	61.3	19.8	41.5 	40	СН	.46	0.7	
3				7		SS			33															
1 3			SPT-1	4		SS		33	†					0.0	40.5	59.5	51.7	19.9	31.8		СН			
4				ļ		SS																		
	ŧ		UDS-2	7		SS								0.7	13.6	85.8 85.8	51.2	<u>19.9</u>	31.4	41.6	СН	.44	11	
5 -				1		SS			49															
1 =	ъ		SPT-2	ļ		SS		49	A					0.0	14.1	85.9	59.8	20.5	39.4		СН			
7					Very week to week,greyish,fine grained, completly	RR				-	-													
8				0000	weathered LIMESTONE.		-7.50 7.50																	
	11		1-2		Very week to week,greyish,fine	RR				24	24													
9	П		3		grained, completly weathered LIMESTONE.	RR				12	12													
10	V			0000	End of Borehole		-10.25 10.25																	
11					End of Borenois																			
12																								
13																								
14																								
15					DIDL MADE		•				<u> </u>			Pro	pare	d by								

BECQUEREL

BIPL ,NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC(INDIA) LIMITED Date: 19.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G.

Project No. 2262

Elevation: 0 Water Level: 4.00 Drilling Method: - Nx core drilling Finished: 30.06.19

																LAB	ORA	ТОІ	RY 1	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Туре	Elevation	SPT - N	-25€ -25€ -25€ -25€ -25€ -25€ -25€ -25€	Core Recovery %	RQD%	% 8 2 25 75	% 0 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	<i>/</i>	Very stiffto hard, Yellowish, CLAY high plasticity	SS																		
	¥		UDS-1	1		SS								2.9	17.2	80.0	56.9	20.4	36.5	40	СН	0.42	10	
3				1		SS			26															
_			SPT-1	1		SS		26	1					1.8	20.4	77.9	52.1	20.6	31.5		СН			
4		_		7		SS																		
5	蕃		UDS-2	H		SS								3.7	18.4	78.0	54.5	20.8	33.8	40	СН	0.44	10	
5				1		SS			31															
6	\$		SPT-2	H		SS		31	Ì					0.5	12.5	87.0	57.8	20.9	36.9		СН			
7				1		SS	-7.50		35															
8-	1		SPT-3	×	Very week to week,greyish,fine	SS	7.50	35	1					2.4	12.2	85.4	53.6	19.4	34.2		СН			
8				×	grained, completly weathered LIMESTONE.	SS	-9.00		>100															
9-	1		SPT-4	+	Very stiffto hard, Yellowish, CLAY high	SS	9.00	>100	/															
10				1	plasticity	SS			17															
11=			SPT-5	1		SS		17	1					2.6	18.0	79.5	53.7	19.4	34.3		СН			
				4		SS			53															
12=	\$		SPT-6	1		SS		53	1					1.5	12.5	86.1	55.1	20.9	34.2		СН			
13			SPT-7	1		SS SS		>100	>100														-	
			51 1-7	1			-14.00)																
14	-				End of Borehole		14.00																	
15																								

BECQUEREL

BIPL, NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC(INDIA) LIMITED Date: 19.07.2019

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G.

Project No. 2262

 Co-ordinates : E-21.26221,N-81.5946
 Location : TYPE 1A-FRONT
 Date Hole Started : 02.07.2019

Elevation: 0 Water Level: 2.10 M Drilling Method: - Nx core drilling Finished: 03.07.2019

															1	LAB	ORA	ТОГ	RY T	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Type	Elevation	SPT - N	-25 -25 -25 -25 -25 -25 -25 -25 -25 -25	Core Recovery %	RQD%	% & 25 75	% 0 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	$\lambda \lambda$	Stiff to very stiff Yellowish CLAY of High Plasticity	SS																		
	Ť		UDS-1	1		SS								4.0	9.7	86.4	54.7	19.5	35.2	40	СН	.5	10	
3				4		SS																		
=	- 1		SPT-1	+		SS		13	13					6.5	12.0	81.6	56.1	20.2	36.0		СН			
4				1		SS																		
	¥		UDS-2	4		SS								6.3	12.5	81.3	52.7	26.9 I	25.8 	40	СН	.48	10	
5 -				1		SS			18															
=			SPT-2]		SS			4					0.5	12.8	86.7	55.1	21.1	34.0		СН			
7	И		-		Very week to week,greyish,fine grained, completly weathered LIMESTONE	RR	6.45			-	-													
8			01-2		weathered LinicoTONE	RR				10	_													
9	H			×			-9.00																	
	I		3-8	喜	Very week to week,greyish,fine grained, highly	RR	9.00			32	08													
10					weathered LIMESTONE End of Borehole	1	10.00																	
11																								
12-														i										
13																								
14																								
15																								
75	1				DIDL MADE	4						•	•	Pr۵	pare	d by								

BECQUEREL

BIPL ,NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMITED Date: 19.07.2019

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G

Project No. 2262

 Co-ordinates:
 N-21.26250
 E-81.59491
 Location:
 TYPE A1-FRONT
 Date Hole Started:
 28.06.2019

Elevation: 0 Water Level: 6.0M Drilling Method: - Nx core drilling Finished: 29.06.2019

																LAB	ORA	ATOI	RY 1	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Туре	Elevation	SPT - N	- 55€T Graph	Core Recovery %	RQD%	% 25 75	% 0 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	1	Stiff to hard,Yellowish CLAY,high plasticity	SS																		
=	¥		UDS-1	1		SS								3.8	10.4	85.9	54.1	20.3	33.7	41	СН	.56	7.6	
2				1		SS			15															
3			SPT-1	11		SS		15	†					0.2	12.0	87.8	54.0	20.4	33.7		СН			
4				7		SS			-	_														
	蕃		UDS-2	H		SS			\					0.6	12.1	87.3	53.9	21.4 I	32.5 I	40	СН	.53	8.3	
5 -				1		SS			>10	00														
1 =	- 1		SPT-2	H		SS	-6.45 6.45	>100																
7					Very week to week,greyish,fine grained,moderatly weathered LIMESTON	SS	-7.50																	
7 8 8 9			1-2		Very week to	RR	7.50			09	-													
10=	11		3-7			RR				23	17													
	M.				End of Borehole		-10.50 10.50)																
11=																								
12-														i										
13																								
14																								
15															pare									

BECQUEREL

BIPL ,NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Project No. 2262

Client: HSCC (INDIA) LIMITED Date: 19.07.19

Project : GI FOR AIIMS RESIDENTIAL COMPLEX PHASE 2nd KABIR NAGAR RAIPUR C. G.

Elevation: 0 Water Level: 6.50 Drilling Method: - Nx core drilling Finished: 14.07.19

																LAB	ORA	TOF	RY T	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Type	Elevation	SPT - N	-55€ -25€ -25€T Graph	Core Recovery %	RQD%	% 25 75	% O 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	1	Very stiff to hard brawnish,CLAY high plasticity	SS																		
	*	•	UDS			SS						-		1.3	14.2	84.5	51.3	20.5	30.8	40	СН	.55	7.9	
3		-		1		SS			>100															
3-	1		SPT	1	Very week to	SS	-3.45 3.45	>100																
4=	Ш				week,greyish,fine grained, completly	SS																		
5			1-9		weathered LIMESTON Very week to week,greyish,fine grained, moderatly weathered LIMESTONE	RR	-4.50 4.50 -6.00			58	30													261.1
7-		<u>-</u>	10-20		Very week to week,greyish,fine grained,highly weathered LIMESTONE	RR	6.00			42	20													296.9
8-11-11-1		-	21-31			RR	-9.00			50	24													281.4
10=			32-34	李	Very week to week,greyish,fine grained, moderatly weathered LIMESTONE	RR	9.00 -10.00 10.00	,		62	62												 	260.2
					End of Borehole																			
11																								
12																								
13																								
14																								
15															2010									

BECQUEREL

BIPL, NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Project No.

Client: HSCC (INDIA) LIMITED Date: 19.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G

Co-ordinates: N-21.26387 E-81.598717 Location: TYPE 3A LEFT SIDE Date Hole Started: 6.07.19

Elevation: 0 Water Level: 6.M Drilling Method: - Nx core drilling Finished: 9.07.19

			011.0			· ·				·····9	11100	iiou.			<u> </u>				13110	<i>.</i> .	0.0			
										,,						LAB	ORA	ТОІ	RY 1	ES	TIN	G	,	
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Туре	Elevation	SPT - N	- 52 - 52 - 52 - 52 - 52 - 52 - 52 - 52	Core Recovery %	RQD%	% % 25 75	% O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	11	Medium stiff to very stiff ,Yellowish,CLAY high plasticity	SS																		
1 3	+		UDS	1		SS								8.8	16.6	74.7 	54.1	21.2]32.9 	33. 3	CH	.42	10	
3				H		SS			26															
3	1		SPT	1		SS		26	^					1.3	16.0	82.7	54.8	21.0	33.8		СН			
4				4		SS	-4.56																	
5			1-13		weak to very weak ,greyish,fine grained, moderately weathered LIMESTON	RR	4.56			66	36													
7			14-20			RR				55	53													553.2
8			21-31			RR	-9.00			64	46													495.9
10	и		DS	set.	medium soft, yellowish CLAY high plasticity	SS	9.00			-	-													
11- 12- 13- 14-					End of Borehole		10.15																	
75		200	BA.											Dro	nare	ما امر								

BECQUEREL

BIPL ,NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMILED Date: 19.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G

Project No. 2262

Co-ordinates: N-21.26439 E-81.59488 Location: TYPE 4A LEFT SIDE Date Hole Started: 13.07.19

Elevation: 0 Water Level: Drilling Method: - Nx core drilling Finished: 15.07.19

	Liev	au	on : U		vvater Lev	ei .			<i></i>	iiiig	we	noa:	- 142	x cor	e an	ıııııg	<u>' </u>	<i></i>	isne	. .	15.0	J7 . 1		
																LAB	ORA	TOF	RY 1	ΓES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Type	Elevation	SPT - N	-52 -45 & T Graph	Core Recovery %	RQD%	% & 25 75	% O 8 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	1	Medium stiff to hard Yellowish CLAY, high plasticity	SS																		
=	٠		UDS-1	1		SS						-		1.0	16.2	82.8	52.0	21.3	30.7	33.3	СН	.52	8.4	
2				7		SS			>100															
3	1		SPT-1	1		SS		>100																
4			1-6		Very weak to week,greyish,fine grained, highly weathered LIMESTONE	RR	3.45			18	11													549.2
5	S. 153 Ta		7-12			RR				46	44													455.0
7	S. 151 W.		13-19			RR				36	12													
3 3 5 6 6 8 8 8	S. 15. 15.		20-23			RR				38	37													387.8
10			24-31	萬		RR	-10.00			24	-													
11					End of Borehole		10.00																	
12																								
13																								
14																								
15					=		1:4	. d T						Dro	pare	d by								

REL

BIPL, NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMILTED Date: 19.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G.

Project No. 2262

Co-ordinates: N-21.26462 E-81.594565 Location: TYPE 4A LEFT SIDE Date Hole Started: 09.07.19

Elevation: 0 Water Level: 7 Drilling Method: - Nx core drilling Finished: 11.07.19

															1	LAB	ORA	TOF	RY T	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Type	Elevation	SPT - N	-25-25 -2	Core Recovery %	RQD%	% % 25.75	% Q 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	111	Soft, Brawnish CLAY high plasticity	SS																		
_			UDS	1		SS	-1.97					•		0.8	17.5	81.8	51.8	21.2	30.6	33.3	СН	0.45	10	
3			1-4		Very weak to weak,greyish,fine grained, highly weathered LIMESTONE	RR	1.97			24	20												5	595.63
4			5-14			RR				34	9													542
3 3 5 6			15-22			RR				63	52													627.9
7-		_	23-26			RR				50	50													467.7
8			27-36			RR				42	15													
10			37-42			RR	-10.50)		38	24													433.1
11 12 13 14					End of Borehole		10.50																	

BECQUEREL

BIPL ,NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMITED Date: 20.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G

Project No. 2262

Co-ordinates: N-21.2646 E-81.594343 Location: TYPE 4A LEFT SIDE Date Hole Started: 04.06.19

Elevation: 0 Water Level: 7.50 M Drilling Method: - Nx core drilling Finished: 06.06.19

	Liev	au	on : U		water Lev	ei :	7.501	VI	Dri	iiiig	iviet	noa:	- N	COL	e arı	ııırıg		ГШ	ISNE	;u :	00.0	70.13	9	
										. •						LAB	ORA	TOF	RY T	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Туре	Elevation	SPT - N	- ST Graph	Core Recovery %	RQD%	% % 25 75	% O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	HSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS		Medium stiff to hard, yellowiish CLAY high plasticity	SS																		
	Ŧ		UDS			SS								3.7	20.5	75.8	52.8	20.9	31.9	33.3	CH	0.42	11	
3						SS			>100															
			SPT-1			SS	-3.45	>100	4															
4			1-2		Very weak to weak,greyish,fine grained,completely weathered LIMESTONE	RR	-4.50			5	-													
5	Sa. 15a 15a		3-5		Very weak to weak,greyish,fine grained, highly weathered LIMESTONE	RR	4.50			16	13													
7	Sec. 12.		6-7			RR	-7.50			26	39													570.5
6	S. 182 ''C		8-10		Very weak to weak,greyish,fine grained, moderately weathered LIMESTONE	RR	7.50			42	64													591.1
10			11-17		Very weak to weak,greyish,fine grained, highly weathered LIMESTONE	RR	9.00)		34	28													637.7
11					End of Borehole	2																		
12																								
14																								
15								od I						Dro	pare	d by								

BECQUEREL

BIPL ,NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMITED Date: 19.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G

Project No. 2262

Co-ordinates: N 21.263452 E-81.595685 **Location**: DIRECTOR BANGLOV**Date** Mole Started: 14.07.19

Elevation: 0 Water Level: 7.50 M Drilling Method: - Nx core drilling Finished: 16.07.19

		-	on : U		water Lev	···				iiiig	INIC	inoa:	- /1/		e un	9			isne	.u .		,,,,		
																LAB	ORA	ТОГ	RY 1	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Туре	Elevation	N-TAS	- 55 - 55 - 55 T Graph	Core Recovery %	RQD%	% % 25 75	% O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	11	Medium stiff to hard , Yellowish CLAY high plasticity	SS																		
1 3	Ŧ		UDS-1	1		SS						-		3.3	20.8	<u>75.9</u>	52.9	21.7	31.1	40	СН	0.5	7.2	
2				1		SS			>100															
	ł		SPT-1	Ц	Medium stiff to hard ,	SS	-3.45 3.45	>100				-												
4					Yellowish CLAY high plasticity Very weak to	SS	-4.50																	
3-3-4-4-5-6-6-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8			1-7		weak,greyish,fine grained, highly weathered LIMESTON Very weak to weak,greyish,fine grained, highly	RR	4.50			32	-													
7		_	8-10		weathered LIMESTON	RR				47	31													531.2
8			11-13			RR				71	44													512.9
-	н		14-17			RR				42	29													510.0
10- 11- 12- 13- 14- 15-					End of Borehole BIPL, NABL		-10.00 10.00							Pre	pare	d by								

Checked by Sheet: 1 of 1

BIPL, NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMITED Date: 19.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G.

Project No. 2262

Co-ordinates: N-21.265677 E-81.596413 **Location**: DIRECTOR BANGLOV**Date Hole Started**: 11.07.19

Elevation: 0 Water Level: 6.50 M Drilling Method: - Nx core drilling Finished: 13.07.19

	Elev	au	on : U		water Lev	е.	0.50 1	VI	Dii	iiiig	iviet	noa:	- /N.	x cor	e arı	ııırıg	<u>' </u>	ГШ	ISNE	: a .	13.0	J7 . 1		
																LAB	ORA	TOF	RY T	ES	TIN	G		
Depth (m)	Run	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Type	Elevation	SPT - N	-55€T Graph	Core Recovery %	RQD%	% & 25.75	% Q 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	1	Medium stiff to hard, Yellowish,CLAY high plasticity	ss																		
	¥		UDS	11		SS								3.3	21.0	75.7	51.0	20.3	30.6	40	СН	.39	11	
2				1		SS			>100															
3			SPT-1	1		SS		>100																
4	$\ $		SPT_2	1		SS	-4.62		>100															
5			1-5		Very weak to weak,greyish,fine grained, highly weathered LIMESTONE	RR	4.62			18	10													476.5
7			6-10			RR				22	16												+	570.7
8			11-19			RR	-9.00			27	6													
10	11		19-25	1414	Very weak to weak,greyish,fine grained, moderately weathered LIMESTONE	RR	9.00)		60	54												-† - -	352.1
11					End of Borehole		10.30																	
12														;										
13																								
14																								
15							1!							Dro	pare	d by								

EL

BIPL, NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,

Client: HSCC (INDIA) LIMITED Date: 19.07.19

Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR C.G.

Project No. 2262

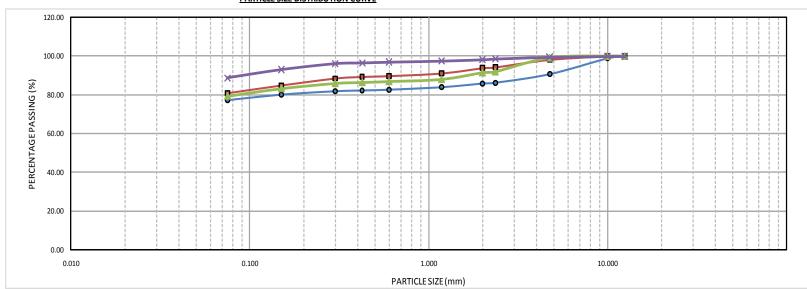
Co-ordinates: N-21.265687 E-81.596523 Location: DIRECTOR BANGLOVDate Hole Started: 08.07.19

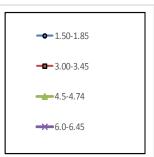
Elevation: 0 Water Level: 6.00 M Drilling Method: - Nx core drilling Finished: 11.07.19

	-	ilio	n : 0		Water Lev	/er .	0.001	VI	ווט	ııırıg	iviet	hod:	- N	x cor	e ar	ııııng	<u> </u>	rın	ishe	ea :	11.0)/ . I:	9	
																LAB	ORA	TOF	RY 1	ES	TIN	G		
Depth (m)	Nail Martin	Water Level	Sample no.	Symbols	LITHOLOGIC DESCRIPTION	Type	Elevation	SPT - N	- 5 - 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Core Recovery %	RQD%	% 25 75 -	% Q 2575	Gravel	Sand	M+C	Liquid limit	Plastic Limit %	Plasticity ,PI	FSI%	Classification	C (Kg/cm2)	Phi	UCS (Kg/cm2)
1			DS	1	Medium stiff to hard, Yellowish, CLAY high plasticity	SS																		
2		U	DS-1	1		SS								3.3	21.0	75.6	51.7	21.2	30.5	33.3	СН	.42 	11	
2				1		SS			67															
3		S	PT-1	1		SS		67	1					2.8	22.6	74.6	51.1	21.0	30.1		СН			
4				1		SS			>100															
1		S	PT-2	H		SS		>100																
5 - 6 -				¥	Very weak ,greyish,fine grained grained, completely weathered LIMESTONE	ss	-6.00																	
7			1-21	H	Moderately weak,greyish,fine grained, highly weathered LIMESTONE	RR	6.00			33	-													
8		2	2-30			RR				48	28													1042
10		3	31-33			RR	-10.20))		17	09												8	892.6
12-					End of Borehole		10.20																	

BECQUEREL

BIPL, NABL Accredited Laboratory
A-36, MIDC Industrial Area, Butibori,


5.0 TEST RESULTS



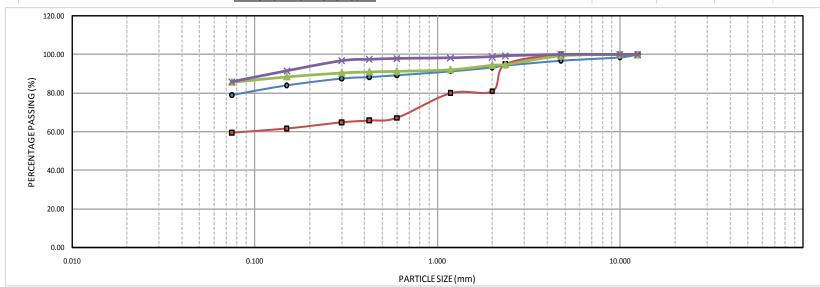
Summary of Soil Test Results Client: HSCC (INDIA) LIMITED 2262 Report No. Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR Report Date: 27.07.2019 IS:2720(P29) IS:2720(P2) IS:2720(P5) IS:2720(P4) IS:2720(P40) IS:2720(P3) IS:2720(P13) IS:2720(P15) IS:1498 Plastic Plasticity **Grain Size Analysis** Angle of Internal Compression **Intial Void** Bulk Dry Moisture Liquid Free Swell Specific Cohesion Sample Depth (m) BH No. Sample ID Density Density Content Limit Limit Index Gravel Sand Silt/Clay Index Gravity Friction Index (Cc) Ratio Classification Type (Given in Lab) kg/cm² gm/cm³ gm/cm³ % % % % % % % % degree 1 2262 UDS 1.50-1.85 1.899 1.567 21.12 59.7 19.3 40.4 9.4 13.4 77.2 41.66 2.620 0.45 10.05 0.15 0.67 CH 1 2262 SPT 3.00-3.45 57.7 19.6 38.1 1.8 17.2 81.0 CH 4.5-4.74 20.0 1 2262 UDS 1.88 1.569 19.79 55.0 35.0 0.9 19.8 79.4 41.66 2.605 0.43 10.80 CH 1 2262 SPT 6.0-6.45 54.0 19.5 34.5 0.4 10.6 88.9 CH

CHIMANA	۸RV	OE	BOCK	TFCT	RESULTS	:
SUIVIIVI	461	UF	NUCN	1631	NESULIS	

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	15.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)

				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	IAPno	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BH NO.	Piece No.	Deptii (iii)	Туре	LAD IIO.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
1	16	7.50-9.00	Core	2262	Soaked	2.425	2.427	0.08	0.19	2.430	0.00	1798.84
1	25	9.00-10.50	Core	2262	Soaked	2.630	2.636	0.24	0.64	2.646	0.00	1569.27



Julillial v Ol Joli 163t Nesults	Summar	v of Soil	Test Results
----------------------------------	--------	-----------	--------------

Client:	HSCC (INDIA) LIMITED	Report No.	2262
Project:	GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR	Report Date:	27.07.2019

				IS:272	0(P29)	IS:2720(P2)		IS:2720(P5	5)	ı	S:2720(P4)	IS:2720(P40)	IS:2720(P3)	IS:2	720(P13)	IS:2720	O(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID	Type	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	Type		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	-	-	-
2	2262	UDS	1.50-1.78	1.82	1.512	20.33	61.3	19.8	41.5	3.2	17.7	79.1	40.00	2.621	0.46	10.74	-	-	СН
2	2262	SPT	3.0-3.45				51.7	19.9	31.8	0.0	40.5	59.5	-	-	-	-	-	-	СН
2	2262	UDS	4.50-4.80	1.792	1.515	18.23	51.2	19.9	31.4	0.7	13.6	85.8	41.66	2.629	0.44	11.07	-	-	СН
2	2262	SPT	6.00-6.45	-	-	-	59.8	20.5	39.4	0.0	14.1	85.9	-	-	-	-	-	-	СН

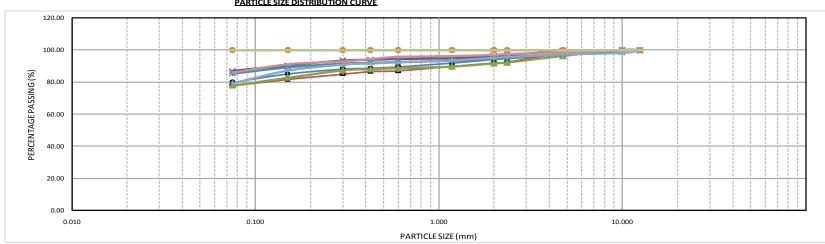
PARTICLE SIZE DISTRIBUTION CURVE

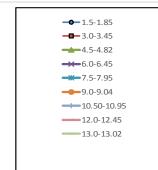
SHMMARY	OF ROCK TEST RESULTS	
JUIVIIVIAILI	OI NOCK IEST MESOETS	

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)

L													
					Tes	st Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
							Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
	BH No.	Piece No.	Depth (m)	Sample	LAB no.	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
	DIT NO.	riece No.	Deptii (iii)	Туре	LAD IIU.	Condition						Strength	Strength Index
							g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
	2	1	7.5-9.00	Core	2262	Soaked	2.629	2.638	0.32	0.83	2.651	0.00	1509.82
	2	2	9.00-10.25	Core	2262	Soaked	2.630	2.643	0.51	1.34	2.665	0.00	1664.14




Summary of Soil Test Results	Results
------------------------------	---------

Client:	HSCC (INDIA) LIMITED	Report No.	2262
Project:	GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR	Report Date:	27.07.2019

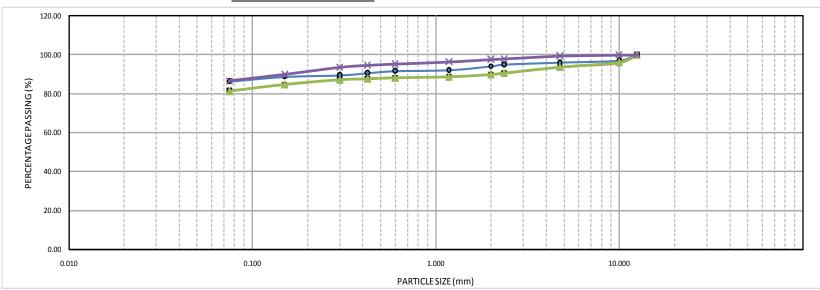
•																			
				IS:272	O(P29)	IS:2720(P2)		IS:2720(P	5)	1.	S:2720(P4)	IS:2720(P40)	IS:2720(P3)	IS:2	720(P13)	IS:272	O(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID	Type	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	,,,		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	-	-	-
3	2262	UDS	1.5-1.85	1.699	1.414	20.12	56.9	20.4	36.5	2.9	17.2	80.0	40.00	2.596	0.42	10.63	-	-	СН
3	2262	SPT	3.0-3.45	-	-	-	52.1	20.6	31.5	1.8	20.4	77.9	-	-	-	=	-	-	СН
3	2262	UDS	4.5-4.82	1.604	1.37	17.03	54.5	20.8	33.8	3.7	18.4	78.0	40.00	2.617	0.44	10.27	-	-	СН
3	2262	SPT	6.0-6.45	-	-	-	57.8	20.9	36.9	0.5	12.5	87.0	-	-	-	-	-	-	СН
3	2262	SPT	7.5-7.95	-	-	-	53.6	19.4	34.2	2.4	12.2	85.4	-	-	-	=	-	-	СН
3	2262	SPT	9.0-9.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	2262	SPT	10.50-10.95	-	-	-	53.7	19.4	34.3	2.6	18.0	79.5	-	-	-	-	-	-	СН
3	2262	SPT	12.0-12.45				55.1	20.9	34.2	1.5	12.5	86.1							СН
3	2262	SPT	13.0-13.02				=	=	-	=	=	=							-

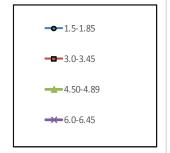
PARTICLE SIZE DISTRIBUTION CURVE

For BIPL Nagpur

Lab. Ada. A-36, MIDC inaustrial Area, Buttbott, Nagpur - 441108 Lab Prione: (U7104) 265567

+91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in




Summary of Soil Test Results	
------------------------------	--

								•							
Client:	HSCC (INDIA) LIMI	ΓED									Report No.	2262			
Project:	GEOTECHNICAL INVES	TIGATION FO	R PROPOSED	CONSTRUCT	ON OF RESIDI	ENTIAL BL	OCKS AT	AIIMS RAI	PUR		Report Date:	27.07.2019			

			IS:272	0(P29)	IS:2720(P2)	ı	S:2720(P	5)	I:	S:2720(P4)	IS:2720(P40)	IS:2720(P3)	IS:2	720(P13)	IS:2720	O(P15)	IS:1498
	Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grain	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
Sample ID	•	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
(Given in Lab)	Турс		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	-	-	-
2262	UDS	1.5-1.85	1.752	1.476	18.66	54.7	19.5	35.2	4.0	9.7	86.4	40.00	2.622	0.50	10.08	-	-	СН
2262	SPT	3.0-3.45	-	-	-	56.1	20.2	36.0	6.5	12.0	81.6	-	-	-	-	-	-	СН
2262	UDS	4.50-4.89	1.785	1.517	17.65	52.7	26.9	25.8	6.3	12.5	81.3	40.00	2.617	0.48	10.41	-	-	СН
2262	SPT	6.0-6.45	-	-	-	55.1	21.1	34.0	0.5	12.8	86.7	-	-	-	-	-	-	СН
	(Given in Lab) 2262 2262 2262	(Given in Lab) 2262 UDS 2262 SPT 2262 UDS	Sample ID (Given in Lab) Type Depth (m) 2262 UDS 1.5-1.85 2262 SPT 3.0-3.45 2262 UDS 4.50-4.89	Sample Sample ID (Given in Lab) Sample Type Depth (m) Density 2262 UDS 1.5-1.85 1.752 2262 SPT 3.0-3.45 - 2262 UDS 4.50-4.89 1.785	Sample ID (Given in Lab) Sample Type Depth (m) Density Density Density 2262 UDS 1.5-1.85 1.752 1.476 2262 SPT 3.0-3.45 - - 2262 UDS 4.50-4.89 1.785 1.517	Sample ID (Given in Lab) Sample Type Bulk Dry Moisture 2262 UDS 1.5-1.85 1.752 1.476 18.66 2262 SPT 3.0-3.45 - - - - 2262 UDS 4.50-4.89 1.785 1.517 17.65	Sample ID (Given in Lab) Sample Type Bulk Dry Moisture Liquid 2262 UDS 1.5-1.85 1.752 1.476 18.66 54.7 2262 SPT 3.0-3.45 - - - 56.1 2262 UDS 4.50-4.89 1.785 1.517 17.65 52.7	Sample ID (Given in Lab) Sample Type Depth (m) Density Density Density Content Limit Limit	Sample ID (Given in Lab) Part (m) Density Density Density Density Content Limit Limit Index	Sample ID (Given in Lab) Sample Type Depth (m) Density Density Density Content Limit Limit Index Gravel	Sample ID (Given in Lab) Sample Type Depth (m) Density Density Density Grain Size And Size A	Sample ID (Given in Lab) Path (m) Density Density Density Density Grave Sand Sit/Clay	Sample ID Given in Lab Sample Type Pastic Pastic Plastic Plastic	Sample ID (Given in Lab) Sample Type Pasticity Sample Type Pasticity Sample ID (Given in Lab) Pasticity Pasticity Gravel Sample ID (Given in Lab) Pasticity Pasticity Pasticity Gravel Sample ID (Free Swell Gravity	Sample ID (Given in Lab) Early (Specific Lab) Bulk (Dry (Density Lab)) Moisture (Density Lab) Liquid (Density Lab) Plasticity (Density Lab) Gravel (Density Lab) Free Swell (Specific Cohesion Specific Cohesion Specific Cohesion Specific Cohesion Specific Cohesion (Density Bright) Density (Density Bright) Content Limit Limit Limit Limit Index (Density Limit Limit Limit Limit Limit Index (Density Limit Li	Sample ID (Given in Lab) Sample Type Bulk Depth (m) Density Density Density Density Content Limit Limit Limit Index Index Gravel Sand Silt/Clay Index Free Swell Specific Gohesion Angle of Internal Gravity Friction 2262 UDS 1.5-1.85 1.752 1.476 18.66 54.7 19.5 35.2 4.0 9.7 86.4 40.00 2.622 0.50 10.08 2262 UDS 3.0-3.45 - - - 56.1 20.2 36.0 6.5 12.0 81.6 - - - - - - 2262 UDS 4.50-4.89 1.785 1.517 17.65 52.7 26.9 25.8 6.3 12.5 81.3 40.00 2.617 0.48 10.41	Sample ID Sample Type Popth (m) Density Dens	Sample ID (Given in Lab)Part (Given in Lab)Bulk (Given in Lab)Density (Given in Lab)Moisture (Given in Lab)Liquid (Given in Lab)Plasticity (Given in Lab)Gravel (Given in Lab)Silt/Clay (Index (Given in Lab))Specific (Given in Lab)Cohesion (Index (Cc) (Index (Given in Lab))Priction (Index (Cc) (Index (Given in Lab))2262UDS1.5-1.851.7521.47618.6654.719.535.24.09.786.440.002.6220.5010.082262SPT3.0-3.4556.120.236.06.512.081.62262UDS4.50-4.891.7851.51717.6552.726.925.86.312.581.340.002.6170.4810.41

PARTICLE SIZE DISTRIBUTION CURVE

SUMMARY OF ROCK TEST RESULTS

	Report No.	SRAF No - 2262
SITE: RAIPUR Rep	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)

				Tes	st Methods:		IS:1	13030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	LAB no.	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
DH NO.	Piece No.	Deptii (iii)	Type	LAD IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
4	1	7.50-9.00	Core	2262	Soaked	2.575	2.598	0.91	2.35	2.637	0.00	1838.85
4	3	9.00-10.00	Core	0	Soaked	2.478	2.485	0.29	0.73	2.496	34.12	-

5

5

2262

2262

SPT

UDS

3.0-3.45

4.50-4.85

1.972

Geotechnical Investigation for Proposed Construction of Residential Blocks at AIIMS Raipur, (CG)

CH

СН

Summary of Soil Test Results Client: HSCC (INDIA) LIMITED Report No. 2262 Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR Report Date: 27.07.2019 IS:2720(P13) IS:2720(P29) IS:2720(P2) IS:2720(P5) IS:2720(P4) IS:2720(P40) IS:2720(P3) IS:2720(P15) IS:1498 Bulk Dry Moisture Liquid Plastic Plasticity **Grain Size Analysis** Free Swell Specific Cohesion Angle of Internal Compression Intial Void IS Sample Depth (m) BH No. Sample ID Density Density Content Limit Limit Index Gravel Sand Silt/Clay Index Friction Index (Cc) Ratio Classification Gravity Type (Given in Lab) gm/cm3 gm/cm³ % % % % kg/cm² degree 5 2262 UDS 1.5-1.85 1.961 1.598 22.65 54.1 20.3 33.7 3.8 10.4 85.9 41.00 2.618 0.26 7.30 CH

0.2

0.6

12.0

12.1

87.8

87.3

40.00

2.622

0.53

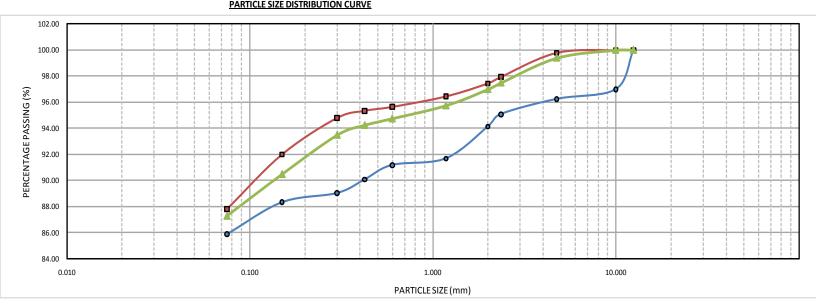
8.30

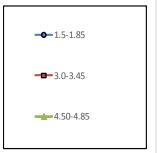
PARTICLE SIZE DISTRIBUTION CURVE

20.36

1.638

54.0


53.9


20.4

21.4

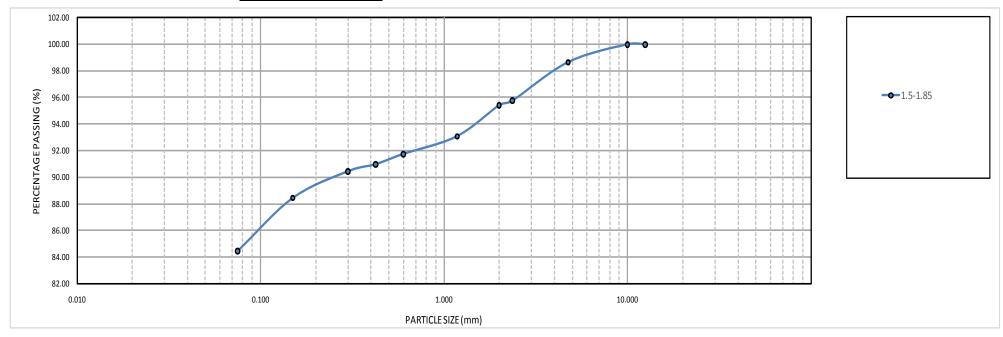
33.7

32.5

SUMMARY OF ROCK TEST RESULTS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)


[
				Tes	st Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	LAB no.	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BH NO.	Piece No.	Deptii (iii)	Туре	LAD IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
5	1	7.50-9.00	Core	2262	Soaked	2.713	2.716	0.10	0.28	2.720	0.00	1835.15
5	3	9.00-10.50	Core	0	Soaked	3.083	3.091	0.25	0.78	3.108	0.00	1627.12

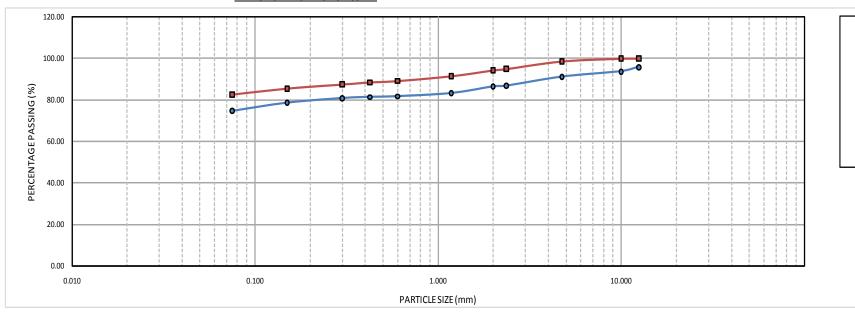
								Su	mmary	of Soil	Test F	esults							
Client:	HSCC (IND	IA) LIMIT	ED										Report No.	2262					
Project:	GEOTECHNIC	AL INVEST	IGATION FO	R PROPOSED	CONSTRUCT	ION OF RESIDI	ENTIAL BL	OCKS AT	AIIMS RAI	PUR			Report Date:	27.07.2019					
				IS:272	0(P29)	IS:2720(P2)		IS:2720(P	5)	I	S:2720(P4)	IS:2720(P40)	IS:2720(P3)	IS:27	720(P13)	IS:2720	O(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID		Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	.,,,,		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	-	-	-
6	2262	UDS	1.5-1.85	1.941	1.582	22.64	51.3	20.5	30.8	1.3	14.2	84.5	40.00	2.608	0.55	7.99	0.13	0.64	СН

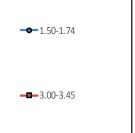
PARTICLE SIZE DISTRIBUTION CURVE

CHIMANARY	OF ROCK TEST	RECITIES
JUIVIIVIAN I	OF NUCK 1E31	NESULIS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)


				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	I A B no	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BH NO.	FIECE NO.	Deptii (iii)	Туре	LAB IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
6	9	4.50-6.00	Core	2262	Soaked	2.435	2.439	0.15	0.36	2.444	261.17	-
6	14	6.00-7.50	Core	2262	Soaked	2.633	2.637	0.14	0.37	2.643	296.88	-
6	26	7.50-9.00	Core	2262	Soaked	2.629	2.632	0.13	0.35	2.638	281.47	-
6	34	9.00-10.00	Core	2262	Soaked	2.628	2.631	0.13	0.35	2.637	260.21	-



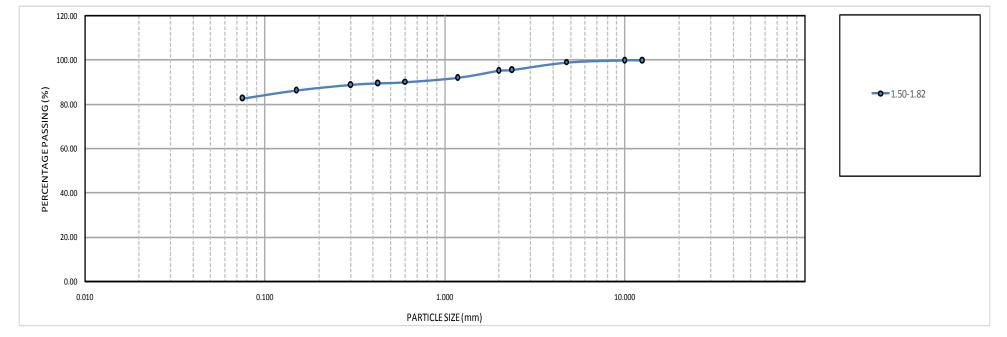
Summary of Soil Test Results																			
Client:	HSCC (IND	IA) LIMIT	ED										Report No.	2262					
Project:	t: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR																		
				IS:2720	O(P29)	IS:2720(P2)		IS:2720(P	5)	ı	S:2720(P4	<u> </u>	IS:2720(P40)	IS:2720(P3)	IS:27	720(P13)	IS:272	0(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID	Type	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	1,700		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	-	-	-
7 2262 UDS 1.50-1.74 1.741 1.403 24.02 54.1 21.2 32.9 8.8 16.6 74.7										74.7	33.33	2.648	0.42	10.74	-	-	СН		
7	2262	SPT	3.00-3.45	-	-	-	54.8	21.0	33.8	1.3	16.0	82.7	-	-	-	-	-	-	СН

PARTICLE SIZE DISTRIBUTION CURVE

SUMMARY OF ROCK TEST RESULTS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)


				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	IARno	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BH NO.	Piece No.	Deptii (iii)	Type	LAB IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
7	13	4.50-6.00	Core	2262	Soaked	2.664	2.666	0.11	0.29	2.671	517.00	-
7	20	6.00-7.50	Core	0	Soaked	2.627	2.633	0.23	0.60	2.643	553.04	-
7	27	7.50-9.00	core	0	soaked	2.633	2.639	0.23	0.60	2.649	495.92	-

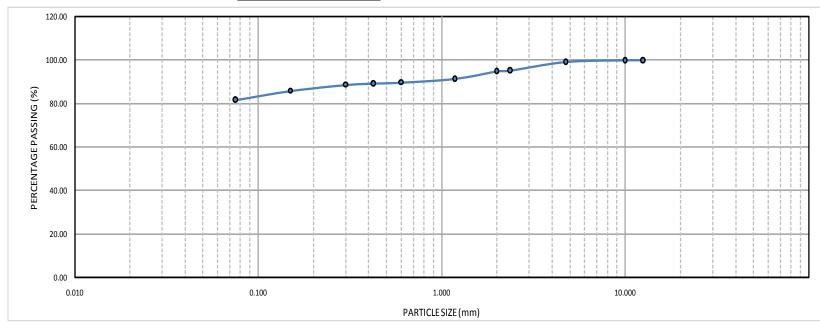
	Summary of Soil Test Results																		
Client:	HSCC (INDI	A) LIMITI	ED				Report No.	2262											
Project:	GEOTECHNIC	AL INVEST	IGATION FO	R PROPOSED	CONSTRUCT	ION OF RESIDE	Report Date:	27.07.2019											
				IS:272	O(P29)	IS:2720(P2)	ı	IS:2720(P	5)	ı	S:2720(P4	!)	IS:2720(P40)	IS:2720(P3)	IS:27	720(P13)	IS:2720	O(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID	Type	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	1,460		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	1	-	-
8	2262	UDS	1.50-1.82	1.682	1.4	20.12	52.0	21.3	30.7	1.0	16.2	82.8	33.33	2.581	0.52	8.40	-	-	СН

PARTICLE SIZE DISTRIBUTION CURVE

SUMMARY OF ROCK TEST RESULTS

CLIENT	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)


				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	LAB no.	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BH NO.	Fiece No.	Deptii (iii)	Туре	LAB IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
8	6	3.02-4.50	Core	2262	Soaked	2.621	2.624	0.12	0.32	2.629	549.15	0.00
8	11	4.50-6.00	Core	2262	Soaked	2.671	2.674	0.11	0.28	2.679	454.88	0.00
8	15	6.00-7.50	Core	2262	Soaked	2.629	2.631	0.09	0.23	2.635	0.00	1983.38
8	23	7.50-9.00	Core	2262	Soaked	2.711	2.714	0.13	0.35	2.720	387.80	0.00
8	27	9.00-10.00	Core	2262	Soaked	2.413	2.429	0.68	1.65	2.453	0.00	775.63

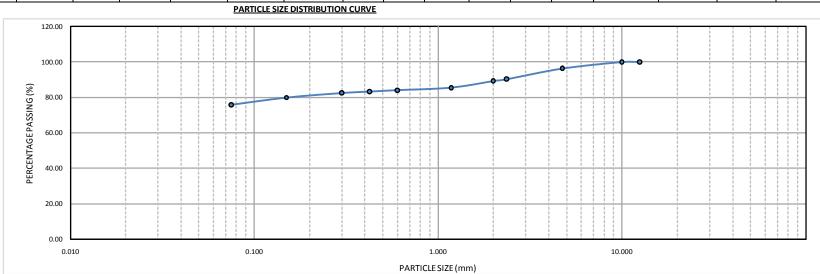
	Summary of Soil Test Results															•	·		
Client:	HSCC (IND	IA) LIMITI	ED				Report No.	2262											
Project:	GEOTECHNIC	CAL INVEST	IGATION FO	R PROPOSED	CONSTRUCT	ION OF RESIDI	Report Date:	27.07.2019											
				IS:272	0(P29)	IS:2720(P2)		IS:2720(P	5)	I:	S:2720(P4	!)	IS:2720(P40)	IS:2720(P3)	IS:27	720(P13)	IS:2720	O(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Graiı	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID	Type	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	.,,,,		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	-	-	-
9	2262	2262 UDS 1.50-1.97 1.665 1.397 19.14 51.8 21.2 30.6 0.8 17.5 8											33.33	2.580	0.45	10.63	-	-	СН

PARTICLE SIZE DISTRIBUTION CURVE

1.50-1.97

SUMMARY OF ROCK TEST RESULTS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019


PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)

				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	IARno	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
DIT NO.	l lece No.	Deptii (iii)	Туре	LAD IIO.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
9	4	1.97-3.00	Core	2262	Soaked	2.698	2.702	0.16	0.43	2.710	595.63	0.00
9	13	3.00-4.50	Core	2262	Soaked	2.701	2.706	0.19	0.51	2.715	542.01	0.00
9	18	4.50-6.00	Core	2262	Soaked	2.705	2.709	0.18	0.48	2.717	627.88	0.00
9	24	6.00-7.50	Core	2262	Soaked	2.692	2.695	0.13	0.35	2.701	467.57	0.00
9	27	7.50-9.00	Core	2262	Soaked	3.001	3.002	0.03	0.09	3.004	0.00	1739.13
9	40	9.00-10.50	Core	2262	Soaked	2.640	2.645	0.22	0.58	2.655	433.12	0.00
							_	_				

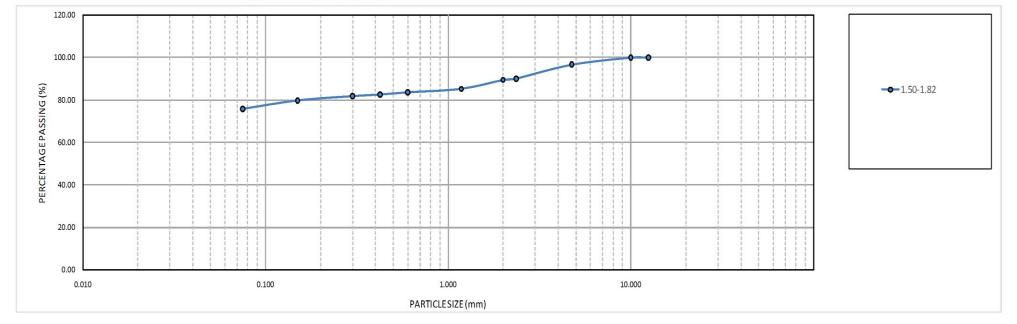
	Summary of Soil Test Results															-			
Client:	HSCC (INDI	A) LIMITI	ED				Report No.	2262											
Project:	GEOTECHNIC	AL INVEST	IGATION FOI	R PROPOSED	CONSTRUCT	ION OF RESID	Report Date:	27.07.2019											
				IS:272	O(P29)	IS:2720(P2)		IS:2720(P	5)	1	S:2720(P4)	IS:2720(P40)	IS:2720(P3)	IS:2	720(P13)	IS:2720	O(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID	Type	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
l lype												%	%	-	kg/cm ²	degree	-	-	-
10	2262 UDS 1.50-1.78 1.792 1.481 21.01 52.8 20.9 31.9 3.7 20.5 75.													2.633	0.42	11.79	-	1	СН
					_	E DISTRIBUTIO		_5.5			_3.5	. 3.0	33.33						

SUMMARY OF ROCK TEST RESULTS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2152
	RAIPUR	Report Date:	15.07.2019

PROJECT: Geotechnical Investigation of AIIMS RESIDENTIAL COMPLEX PHASE 2nd KABIR NAGAR RAIPUR C.G.

				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	I AR no	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
DH NO.	Fiece No.	Deptii (iii)	Type	LAB IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
10	4	4.50-6.00	Core	2262	Soaked	2.896	2.899	0.10	0.28	2.904	513.20	0.00
10	7	6.00-7.50	Core	2262	2262 Soaked	2.675	2.676	0.05	0.13	2.678	571.37	0.00
10	8	7.50-9.0	Core	2262	Soaked	2.794	2.798	0.12	0.33	2.804	590.89	0.00
10	12	9.00-10.00	Core	2262	2 Soaked	2.616	2.619	0.13	0.34	2.625	637.77	0.00


For BIPL

								Sui	mmary	of Soil	Test F	Results							
Client:	HSCC (IND	IA) LIMIT	ED										Report No.	2262					
Project:	GEOTECHNIC	AL INVEST	IGATION FO	R PROPOSED	CONSTRUCT	ION OF RESIDI	ENTIAL BI	LOCKS AT	AIIMS RAI	PUR			Report Date:	27.07.2019					
				IS:272	O(P29)	IS:2720(P2)	1	IS:2720(P5	5)	I.	S:2720(P4	9)	IS:2720(P40)	IS:2720(P3)	IS:27	720(P13)	IS:272	IS:2720(P15) IS:	
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Graiı	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID		Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	Type		gm/cm ³	gm/cm ³	%	% % % % %					%	%	-	kg/cm ²	degree	-	-	-
11	2262	UDS	1.50-1.82	1.78	1.507	18.10	52.9	21.7	31.1	3.3	20.8	75.9	40.00	2.640	0.55	7.20	-	-	СН

PARTICLE SIZE DISTRIBUTION CURVE

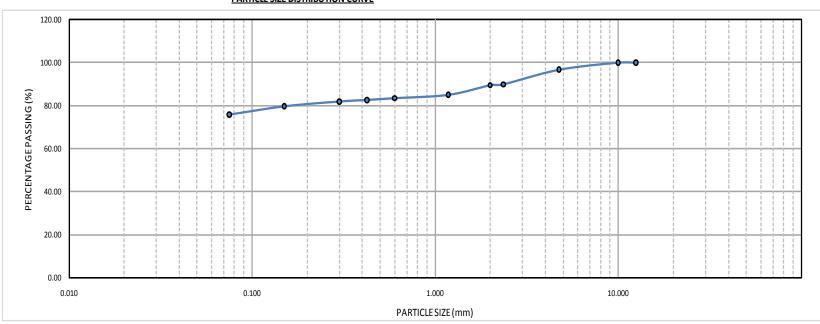
For BIPL Nagpur

SUMMARY OF ROCK TEST RESULTS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)

				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	IARno	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BH NO.	FIECE NO.	Deptii (iii)	Туре	LAD IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
11	6	4.50-6.00	Core	2262	Soaked	2.198	2.203	0.21	0.46	2.208	0.00	1092.02
11	10	6.00-7.50	Core	2262	Soaked	2.704	2.706	0.05	0.13	2.708	531.23	0.00
11	13	7.50-9.00	Core	2262	Soaked	2.630	2.631	0.05	0.14	2.633	511.65	0.00
11	17	9.00-10.00	Core	2262	Soaked	2.702	2.705	0.10	0.27	2.709	509.93	0.00


For BIPL

	•	•	•		•	•	•	Su	mmary	of Soil	Test F	Results	•	•		•	•	•	
Client:	HSCC (INDI	IA) LIMIT	ED										Report No.	2262					
Project:	Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR												Report Date:	27.07.2019					
				IS:272	O(P29)	IS:2720(P2)	-	IS:2720(P	5)	1.	S:2720(P4	1)	IS:2720(P40)	IS:2720(P3)	IS:27	720(P13)	IS:272	O(P15)	IS:1498
		Sample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID		Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	.,,,,		gm/cm ³	gm/cm ³	%	% % % % % %						%	-	kg/cm ²	degree	-	-	-
12	2262	UDS	1.50-1.85	1.886	1.556	21.14	51.0	20.3	30.6	3.3	21.0	75.7	40.00	2.584	0.39	11.00	0.13	0.66	СН

PARTICLE SIZE DISTRIBUTION CURVE

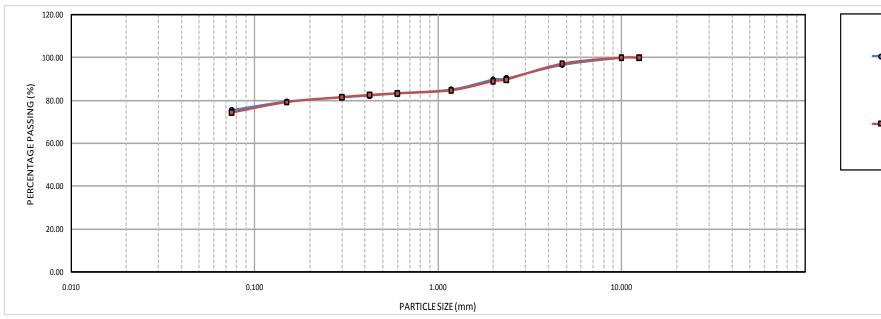
For BIPL Nagpur

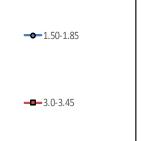
SUMMARY OF ROCK TEST RESULTS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)

				Test	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	IARno	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BH NO.	FIECE NO.	Deptii (iii)	Туре	LAB IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
12	5	4.62-6.00	Core	2262	Soaked	2.629	2.633	0.16	0.43	2.640	476.41	0.00
12	10	6.00-7.50	Core	2262	Soaked	2.836	2.844	0.29	0.83	2.860	570.64	0.00
12	19	7.50-9.00	Core	2262	Soaked	2.557	2.566	0.34	0.87	2.579	0.00	1181.49
12	22	9.00-10.30	Core	2262	Soaked	2.693	2.695	0.08	0.22	2.699	352.10	0.00


For BIPL



					,			Su	mmary	of Soil	Test F	Results							
Client:	ient: HSCC (INDIA) LIMITED													2262					
Project: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR										Report Date:	27.07.2019								
				IS:272	0(P29)	IS:2720(P2)		IS:2720(P5) IS:2720(P4)						IS:2720(P3) IS:2720(P13)				IS:2720(P15)	
		Cample		Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Grai	n Size An	alysis	Free Swell	Specific	Cohesion	Angle of Internal	Compression	Intial Void	IS
BH No.	Sample ID	Sample Type	Depth (m)	Density	Density	Content	Limit	Limit	Index	Gravel	Sand	Silt/Clay	Index	Gravity		Friction	Index (Cc)	Ratio	Classification
	(Given in Lab)	турс		gm/cm ³	gm/cm ³	%	%	%	%	%	%	%	%	-	kg/cm ²	degree	-	-	-
13	2262	UDS	1.50-1.85	1.781	1.495	19.10	51.7	21.2	30.5	3.3	21.0	75.6	33.33	2.635	0.42	11.95	-	-	СН
13	27.07.2019	spt	3.0-3.45	-	-	-	51.1	21.0	30.1	2.8	22.6	74.6	-	-	-	-	-	-	СН

PARTICLE SIZE DISTRIBUTION CURVE

For BIPL Nagpur

SUMMARY OF ROCK TEST RESULTS

CLIENT:	HSCC (INDIA) LIMITED	Report No.	SRAF No - 2262
SITE:	RAIPUR	Report Date:	27.07.2019

PROJECT: GEOTECHNICAL INVESTIGATION FOR PROPOSED CONSTRUCTION OF RESIDENTIAL BLOCKS AT AIIMS RAIPUR (C.G.)

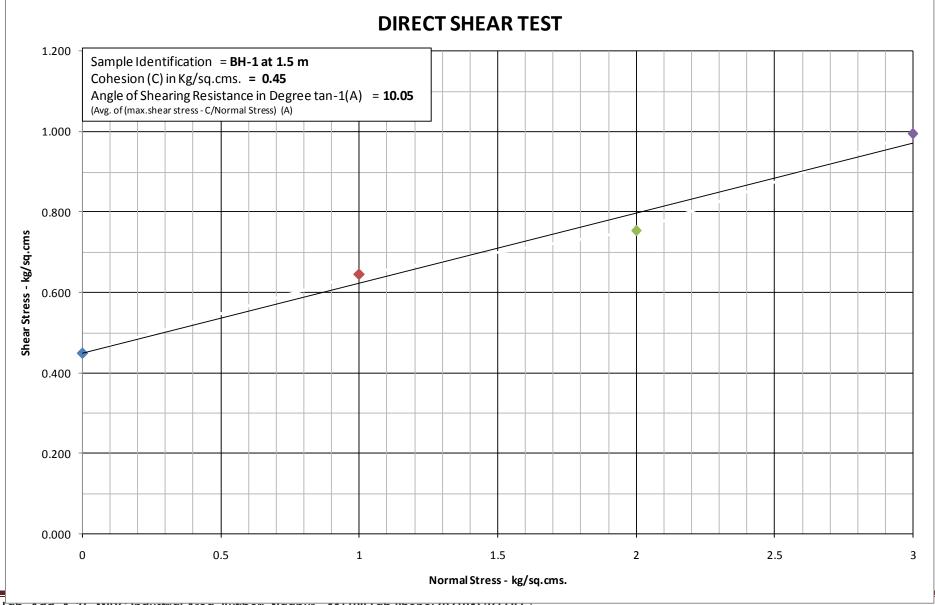
				Tes	t Methods:		IS:1	3030		IS:1122	IS:9143	IS:8764
						Dry	Saturated	Water	Porosity	Specific	Unconfined	Uniaxial Compressive
BH No.	Piece No.	Depth (m)	Sample	IARno	Condition	Density	Density	Absorption		Gravity	Compressive	Strength by Point Load
BIT NO.	FIECE NO.	Deptii (iii)	Туре	LAB IIU.	Condition						Strength	Strength Index
						g/cc	g/cc	%	%	-	Kg/cm²	Kg/cm²
13	17	6.00-7.50	Core	2262	2262 Soaked	2.696	2.710	0.49	1.31	2.732	0.00	1503.65
13	30	7.50-9.00	Core	2262	262 Soaked	2.734	2.736	80.0	0.21	2.740	1042.92	0.00
13	33	9.00-10.20	Core	2262	Soaked	2.627	2.633	0.23	0.62	2.643	892.44	0.00

For BIPL

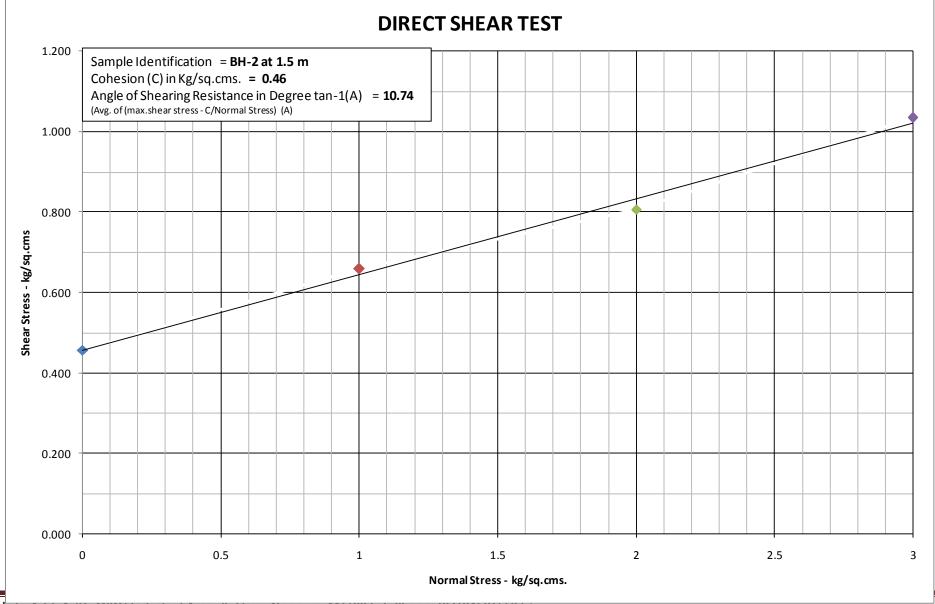
6.0 CHEMICAL TEST RESULTS

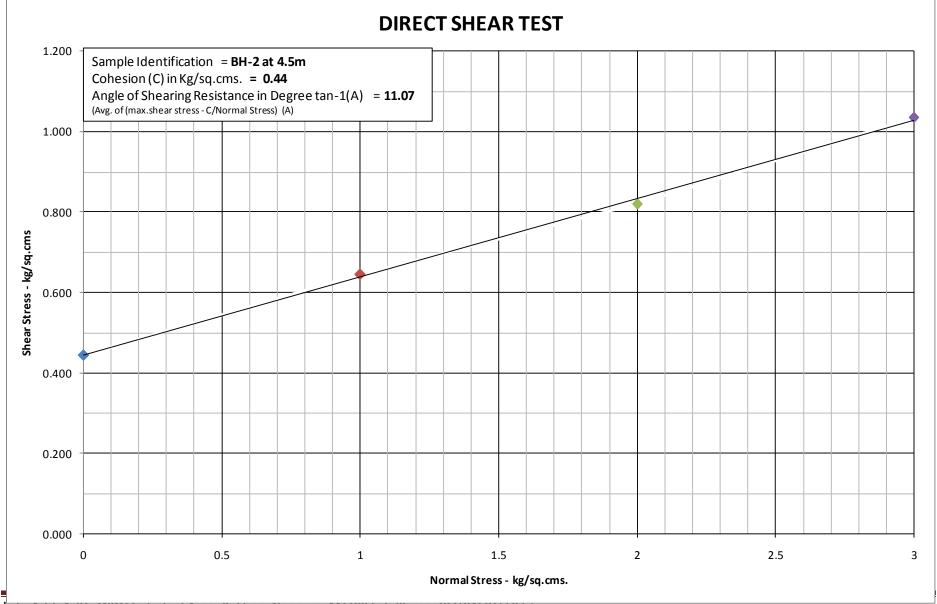
	CHEMICAL TEST OF WATER SAMPLE													
B	Test Results & Sample Identification													
Parameters -	BH-1	BH-2	BH-3	BH-4	BH-5	BH-6	BH-7	BH-8	BH-9	BH-10	BH -11	BH-12	BH-13	As Per IS : 456 - 2000
pH Value	7.61	7.60	7.45	7.90	7.85	7.20	7.75	8.10	7.21	7.72	7.62	7.79	6.50	Min. 6
Sulphate – mg/lit.	78.89	76.83	67.23	72.03	74.09	80.95	82.32	96.04	71.34	85.75	62.42	59.68	58.31	Max. 400
Chlorides – mg/lit.	64.98	59.98	52.98	60.98	54.98	64.98	64.98	66.98	64.98	62.98	41.98	44.98	42.98	max. 500 for RCC

CHEMICAL TEST OF SOIL SAMPLE													
Parameters	Test Results & Sample Identification												
	BH-1	BH-2	BH-3	BH-4	BH-5	BH-6	BH-7	BH-8	BH-9	BH-10	BH -11	BH-12	BH-13
pH Value	8.16	7.85	8.32	8.36	7.68	8.10	8.06	8.30	7.82	8.75	7.72	8.45	7.93
Sulphate (SO ₃) % by mass	0.054	0.036	0.041	0.044	0.030	0.032	0.037	0.049	0.030	0.046	0.044	0.053	0.041
Chlorides – % by mass	0.022	0.103	0.022	0.103	0.039	0.008	0.030	0.103	0.015	0.103	0.103	0.103	0.103

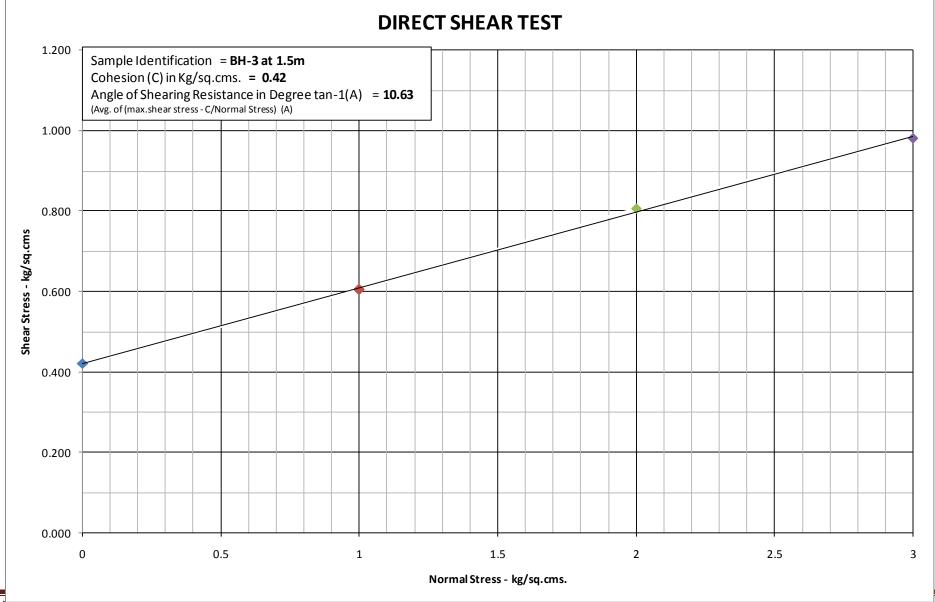


7.0 GRAPHS

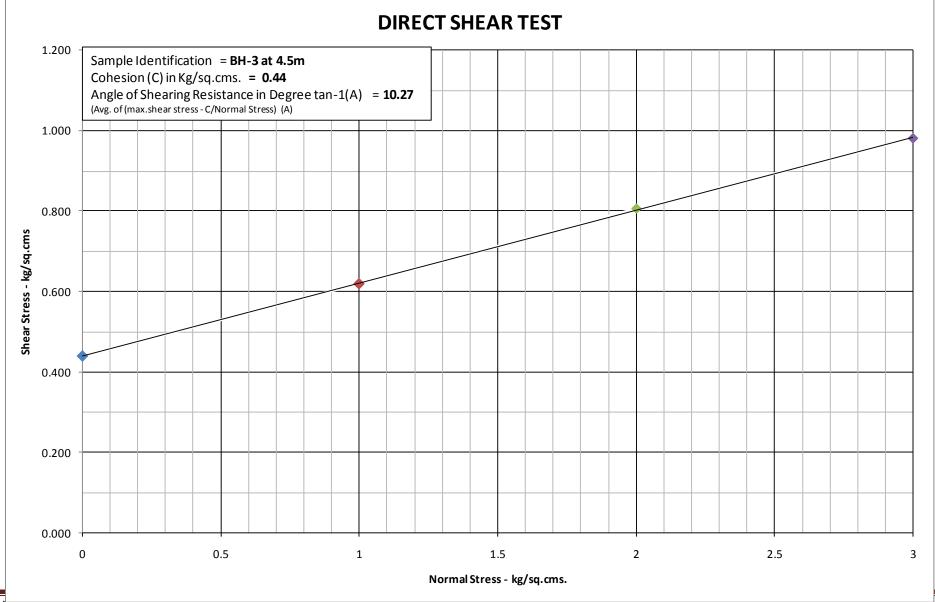




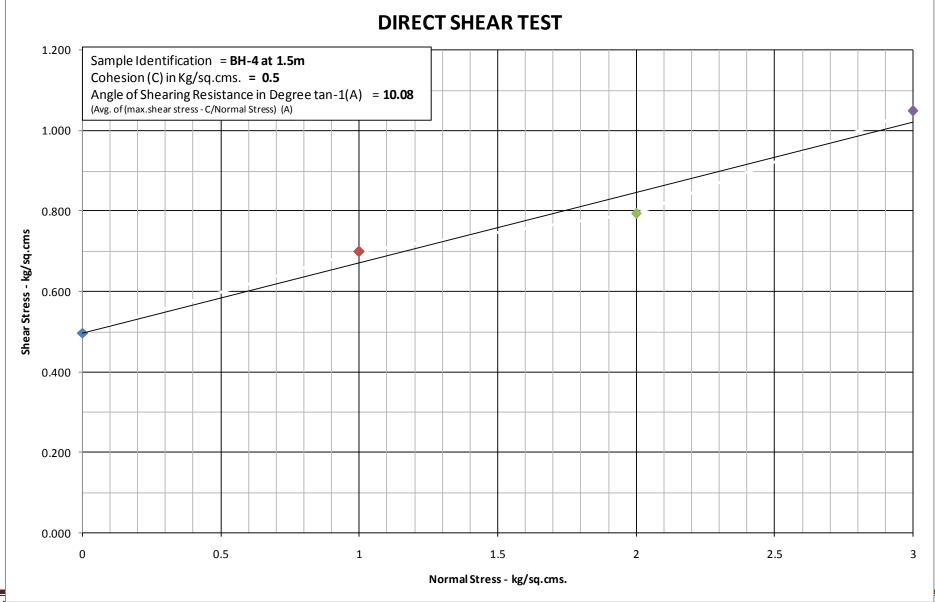
Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441 108 Lab Phone: (0/104) 26558/



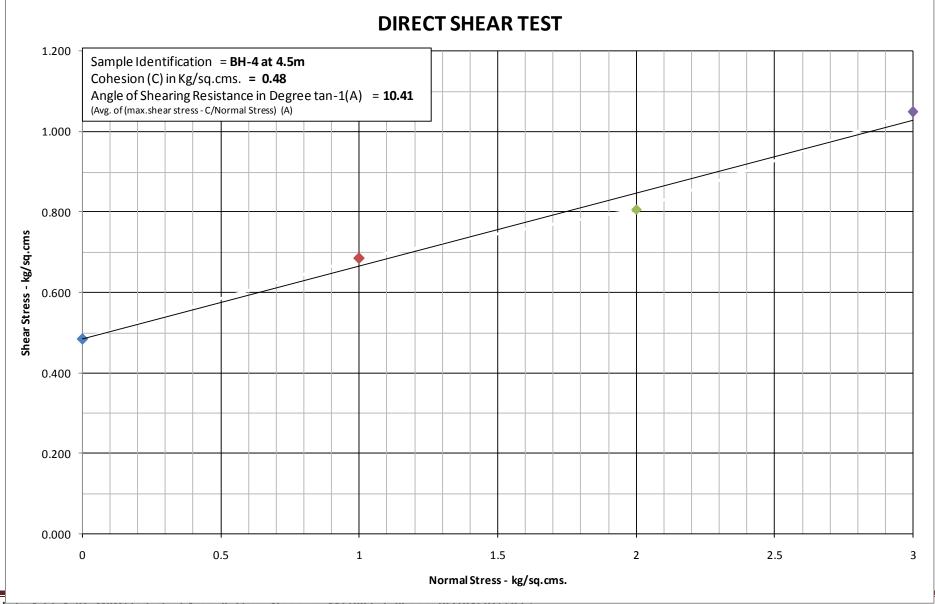
Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/



Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/



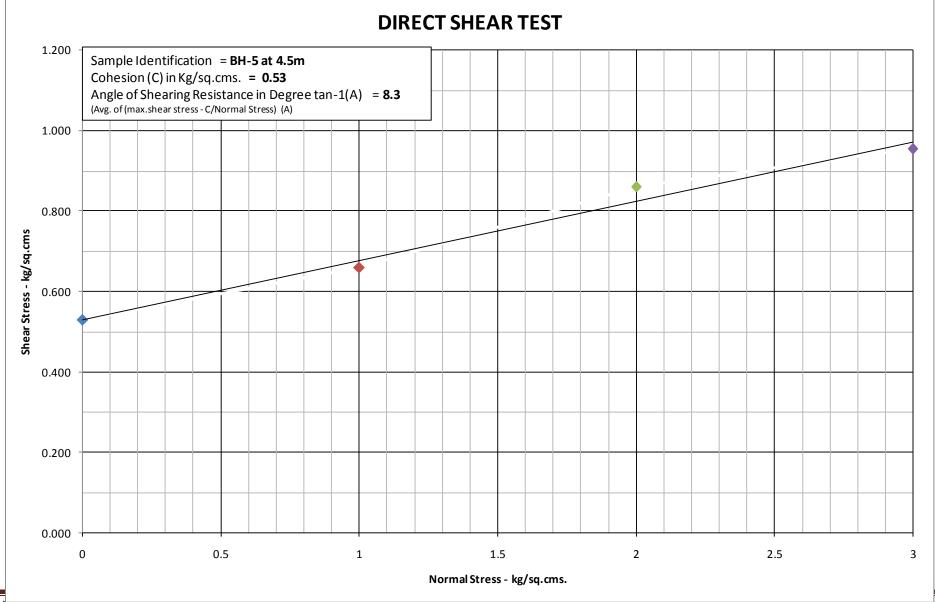
Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/



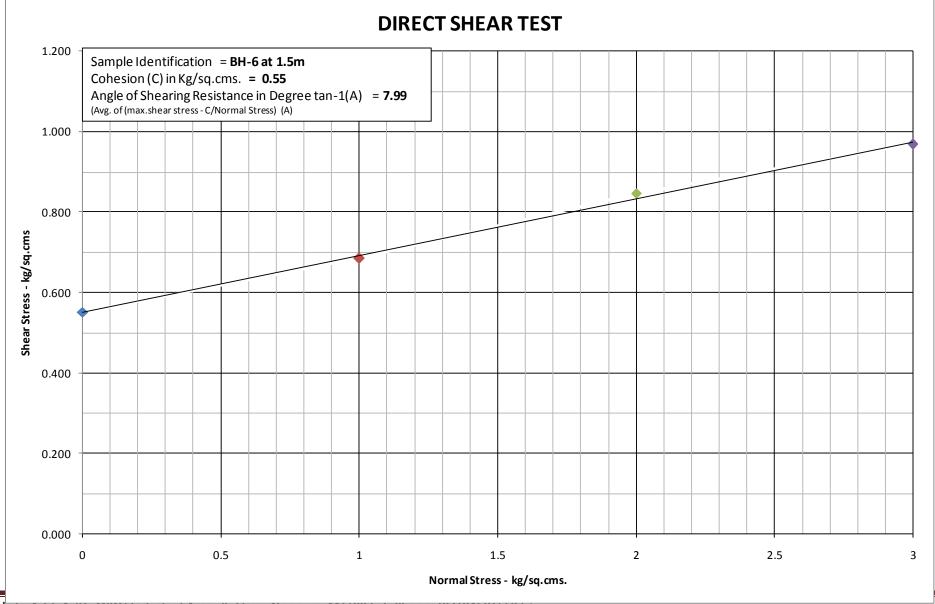
Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/



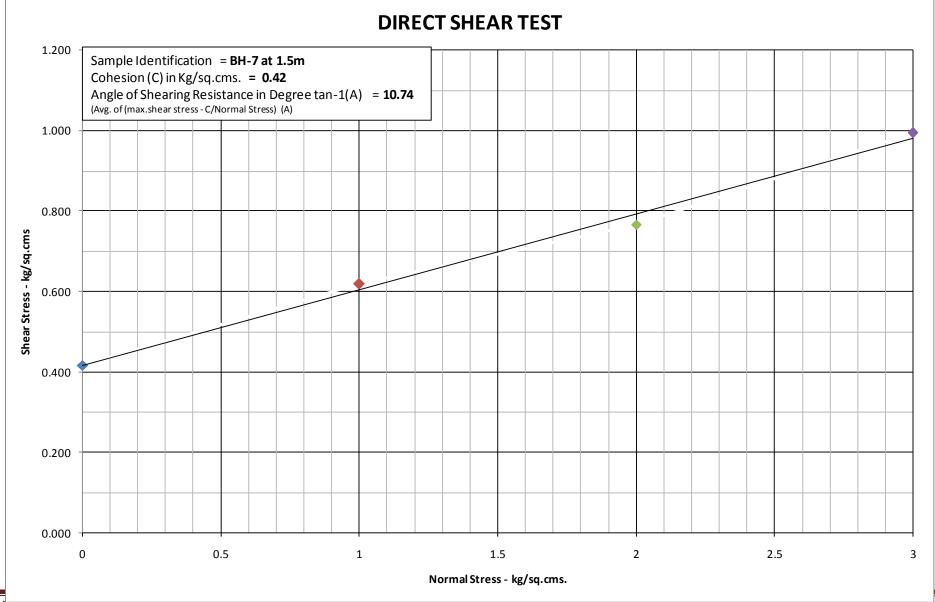
Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/



Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/



Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/

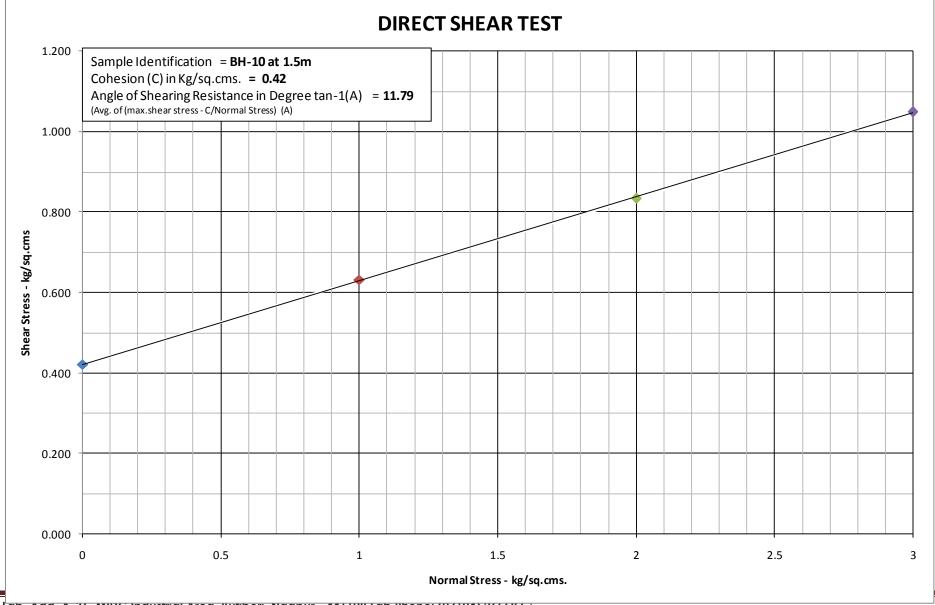


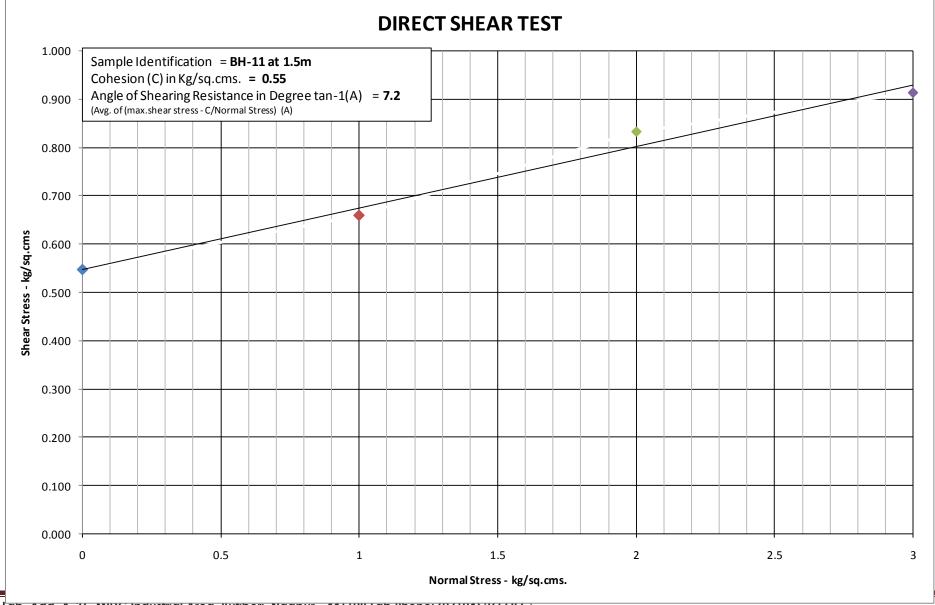
Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/

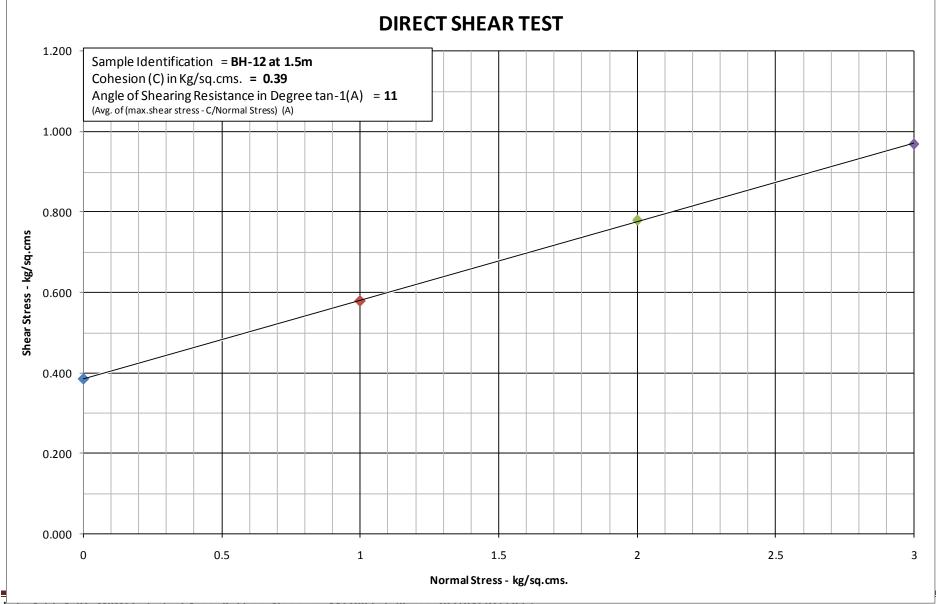
+91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in

Lab. Add. A-36, MIDC Industrial Area, Buttbori, Nagpur - 441108 Lab Phone: (0/104) 26558/ +91 9689 909 304 E-mail: spectro@bipIndt.com, Web Site: www.bipIndt.in

Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/

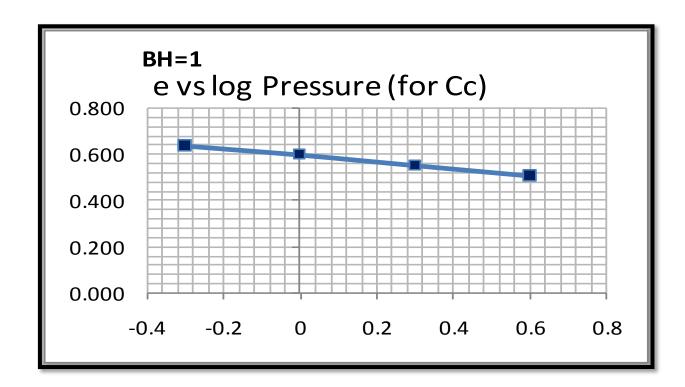


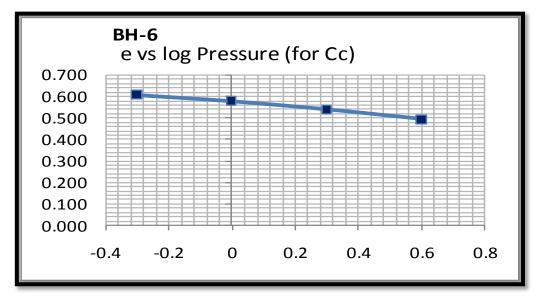


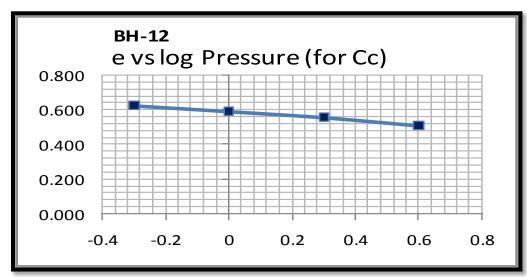




Lab. Add. A-36, MIDC Industrial Area, Butibori, Nagpur - 441108 Lab Phone: (0/104) 26558/




CONSOLIDATION GRAPHS



8.0 PHOTOGRAPHS

PHOTOGRAPHS

MACHINES AND CORE BOX

